dc.description.abstract | Recent advancements in technology and growing environmental awareness have increased the demand for green energy sources. Thermoelectric modules, which convert waste heat into electricity, are gaining attention. Mid-temperature modules made of tin telluride (SnTe) are notable for their high performance in the 400-800 K range. Although lead telluride has slightly better thermoelectric properties, SnTe is preferred for its safety and non-toxicity. In practical applications, mid-temperature thermoelectric modules undergo long term thermal aging, leading to interfacial reactions between the thermoelectric materials and electrodes. This can significantly reduce module performance or even cause failure. In this study, commercial AgCuZnSn braze paste will be used to bond SnTe with Cu electrodes under the
condition of 973 K for 1 minute. The samples will then undergo thermal aging tests at 500 K and 600 K for 1, 5, and 15 days. This research aims to investigate interfacial reactions at different temperatures and assess the reliability of mid-temperature SnTe thermoelectric
modules under long-term operational conditions. Additionally, cobalt (Co) electroplating will be attempted as a barrier layer to improve joint conditions. Thermal aging tests at 600 K for 1, 5, and 15 days will be conducted to evaluate the effect of Co electroplating on interfacial reactions and joint mechanical properties. Experimental results indicate that this bonding method can successfully bond SnTe and
Cu electrodes, maintaining a certain level of joint strength after thermal aging tests at 500 K for 15 days. However, at 600 K, intense interfacial reactions cause significant Cu diffusion at the joint, leading to a substantial decrease in joint strength. Introducing a Co diffusion barrier not
only improves joint strength but also maintains good joint strength after thermal aging tests. | en_US |