dc.description.abstract | Hydroxyl-terminated polybutadiene (HTPB) is a telechelic polymer, with a molecular structure composed of terminal hydroxyl groups and various forms of butadiene units in the middle. HTPB possesses multifunctional characteristics and is commonly used in adhesives, fuels, and coatings across various fields. However, most HTPB used domestically is imported, which can lead to certain inconveniences, such as differences in domestic and international regulations, instability in raw material quality, and price fluctuations. Therefore, we aim to independently produce qualified HTPB in the future to reduce our reliance on external sources.
The purpose of this study is to establish a continuous process for producing HTPB using Aspen Plus. The feed design includes two pipelines that adjust pressure and temperature to ensure the materials enter the reactor in liquid form, reducing safety hazards. The reaction uses free radical polymerization (FRP), which has high controllability and a simple reaction mechanism. By utilizing actual experimental data, we calculate the kinetic parameters for a 3/8’’ plug flow reactor (3/8’’PFR) and a microchannel reactor (MCR). Additionally, we use built-in analysis tools in Aspen Plus to adjust HTPB specifications by altering parameters such as feed ratio, reaction time, and reaction temperature. In the separation process, we use separator and distillation columns to purify HTPB, butadiene, and isopropanol, and recycle the purified butadiene and isopropanol.
This study successfully established a method for quickly calculating kinetic parameters using Aspen Plus. The simulation results closely matched actual experimental data, indicating high reliability in process design and parameter calculations. Furthermore, under conditions that keep the materials entirely in the liquid phase, we found suitable reaction parameters that achieved a conversion rate of 40%, with the number-average molecular weight maintained around 3000. The purified HTPB, butadiene, and isopropanol all achieve a purity of over 99%. The recovery rates of butadiene and isopropanol are also above 99%, and their recycling does not alter the properties of HTPB, effectively preventing material waste. | en_US |