dc.description.abstract | Hydrogen energy has attracted widespread attention in recent years due to its sustainability, high conversion efficiency, and high energy density. Currently, electrocatalytic water splitting is a carbon-free, high-purity, and sustainable hydrogen production strategy. However, the design of an earth-abundant electrocatalyst with high activity and stability is crucial for industrial-scale hydrogen gas production via water electrolysis.
In this study, a low-cost and high-performance NiFeMn ternary ceramic catalyst was produced by rapid laser pulse salt synthesis method (PLMS). This process effectively and rapidly produced a spinel structure, which significantly reduced the energy levels of the oxygen evolution reaction (OER) through manganese doping. Furthermore, the optimal ratio of the ternary catalyst was further investigated in the study. When the manganese ratio reached twice that of nickel and iron, it exhibited lower onset voltage and overpotential. According to cyclic voltammetry tests, the on-set potential was 1.495V (vs. reversible hydrogen electrode, RHE) of NiFeMn. In a conventional three-electrode setup tests, the NiFeMn@NF obtained a low overpotential of only 282 mV at a current density of 10 mA/cm². Moreover, it operated for over 1500 hours at a constant current density of 100 mA/cm² in chronoamperometry tests. In summary, the NiFeMn ternary ceramic catalyst demonstrates advantages in electrocatalytic water splitting. Its excellent performance provides new possibilities for future industrialization. | en_US |