dc.description.abstract | In recent years, exacerbated global warming and extreme weather conditions have led to numerous natural disasters worldwide. Consequently, environmental conservation has become an urgent priority, prompting countries worldwide to enact relevant policies. Examples include the European Union′s Green Deal, China′s commitments to peak carbon emissions and achieve carbon neutrality, the United States′ support for renewable energy initiatives, and various measures to control plastic waste.
In order to contribute to environmental protection efforts, we are continuing our previous development of recycling printed circuit board (PCB) dust, with a focus on expanding the scope of its application. We are evaluating the possibility of incorporating the recycled separating solution into other materials, creating new recycled materials. Through the use of vacuum distillation technology, we have successfully achieved a recovery rate of over 90% for the separating solution.
Furthermore, we have attempted to separate the non-metallic portion of the shaping dust and incorporate it into other polymers for recycling. Among the various processing methods tested, content 10% non-metal powder that is ball milled for 2hr have a resulted in the highest tensile strength. Additionally, the maximum decomposition rate temperature of the sample with added non-metallic dust is approximately 425°C, indicating better thermal stability compared to samples without additives. This blending of non-metallic dust produces a recycled material with improved strength, hardness, and high-temperature resistance.
In addition to the original application for shaping dust, we have extended this separation technology to drilling dust, achieving successful separation. The non-metallic copper content of the separated non-metallic dust from drilling dust is approximately 0.96wt%, while the copper content of the lower-layer metallic dust is 75.29wt% | en_US |