dc.description.abstract | This study aims to investigate the application and performance of vacuum diffusion bonding technology in the production of cold plates made from aluminum alloys. Aluminum alloys are widely used in various industrial fields, including aerospace, automotive, and electronics, due to their lightweight, high strength, and excellent thermal conductivity. However, the characteristics of aluminum alloys, such as their tendency to oxidize easily and the presence of a stable oxide layer on their surface, present challenges for diffusion bonding technology.
In the experiment, Al 6061 aluminum alloy was used to fabricate cold plates through vacuum diffusion bonding technology, and their mechanical properties and multiple efficiency tests were conducted. The main purpose was to discuss the impact of various bonding parameters (including temperature, pressure, and time) on the mechanical properties of the cold plates, such as changes in the compression of the plates, the creep of the channels and support ribs, and differences in mechanical strength. Additionally, the applicability of vacuum diffusion bonded cold plates was analyzed, along with testing the thermal recovery efficiency and suitability for battery thermal management.
The experimental results showed that different bonding parameters had varying degrees of influence on the compression rate of vacuum diffusion bonding. There was a positive correlation between the bonding temperature and holding time on the compression rate, and the compression of the cold plate channels was due to creep during bonding. In tensile shear tests, a proportional relationship between the bonded area and shear force was observed, with smaller bonded areas resulting in lower shear forces. The shear force in this study was only 39% of that reported in the literature. In performance tests, the bonded cold plates exhibited excellent results in performance testing and thermal recovery efficiency. The water tightness test of the plates demonstrated their ability to withstand high pressure without leaking, proving their reliability in harsh environments. Additionally, thermal recovery efficiency test results indicated that cold plates made through vacuum diffusion bonding have excellent thermal conductivity and can effectively remove heat from the battery surface, providing an effective thermal management mechanism for batteries.
Overall, this study demonstrates the feasibility and superiority of vacuum diffusion bonding technology in producing high-performance cold plates from aluminum alloys. This not only provides new possibilities for the application of aluminum alloys in high-performance cooling solutions but also lays the foundation for further research and application of diffusion bonding technology. | en_US |