博碩士論文 111423007 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊管理學系zh_TW
DC.creator李權恒zh_TW
DC.creatorChuan-Heng Lien_US
dc.date.accessioned2024-7-4T07:39:07Z
dc.date.available2024-7-4T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111423007
dc.contributor.department資訊管理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究旨在探討因子選股策略在現代金融市場中的應用與效果,特別 是雙因子選股模型在實際投資中的性能比較。隨著大數據技術和量化分析方法 的發展,因子選股已成為識別投資機會的重要工具。本研究採用交集篩選法、 過濾篩選法、加權內插法與加權排名法四種不同的雙因子選股模型進行實證分 析,通過對比各模型在相同回測條件下的表現,評估它們對投資組合績效的影 響。結果顯示,不同的選股策略對於提升回報率及風險管理具有顯著差異。本 研究開發了一個股票回測工具,支援因子分析,並通過多種回測指標檢視績 效。研究結果為投資者提供了一套更客觀、結構化的選股框架,幫助他們在多 變的市場環境中做出更精確的投資決策。zh_TW
dc.description.abstractThis study aims to explore the application and effectiveness of factor-based stock selection strategies in modern financial markets, with a particular focus on the performance comparison of two-factor stock selection models in practical investments. With the development of big data technology and quantitative analysis methods, factor-based stock selection has become an important tool for identifying investment opportunities. This study employs four different two -factor stock election models: Intersection screening method, Filter screening method, Weighted interpolation method, and Weighted ranking method, to conduct empirical analysis. By comparing the performance of each model under the same backtesting conditions, the study evaluates their impact on portfolio performance. The results indicate significant differences among the stock selection strategies in terms of improving returns and managing risk. This research develops a stock backtesting tool that supports factor analysis and examines performance through various backtesting indicators. The findings provide investors with a more objective and structured stock selection framework, assisting them in making more precise investment decisions in a volatile market environment.en_US
DC.subject量化交易zh_TW
DC.subject因子選股zh_TW
DC.subject股市回測平台zh_TW
DC.subject金融大數據zh_TW
DC.subjectPythonzh_TW
DC.subjectQuantitative Tradingen_US
DC.subjectFactor-based Stock Selectionen_US
DC.subjectStock Market Backtesting Platformen_US
DC.subjectFinancial Big Dataen_US
DC.subjectPythonen_US
DC.title雙因子選股邏輯對投資組合績效影響之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titlePerformance Evaluation for Stock Selection Strategies of Two Factor Analysisen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明