dc.description.abstract | To date, the demand for data storage has seen explosive growth, creating an urgent need for memory technologies capable of storing large amounts of data in a shorter time—something that Flash or DRAM cannot achieve. Intel Optane, often referred to as 3D phase-change memory, is one of the most promising candidates. Built with a cross-point architecture, Optane uses stacked memory and a selector known as an Ovonic Threshold Switch (OTS). OTS devices utilize chalcogenide thin films, which have drawn increasing attention in recent years. In this study, we explore nitrogen-doped GeTeC material as an Ovonic threshold switch selector, which demonstrates superior electrical performance compared to commercial GeSe-based selectors. This selector has an off-to-on current ratio greater than 10?, compatibility with back-end processes(400°C for 30 minutes), and a low variability with a large voltage window (0.8V). To investigate how trace nitrogen elements significantly alter material properties, we applied the Berry phase method in this computational study, imposing a uniform electric field on GeTe-based materials. We observed that localized states within the band gap transition to delocalized conduction band edge states. We employed rigorous first-principles calculations and ab initio molecular dynamics to analyze chemical bonding within the material (following the 8-N rule for chemistry) and used the ICOHP analysis method to reveal the source of low variability, attributed to the formation of stable C-N and C-Ge bonds and C-C chains. These atomic bonds enhance the tetrahedral cluster structure within GeTe-based chalcogenide materials, suppress atomic mobility, and reduce phase separation, thereby improving Vth variability across cycles. Through electric field simulation calculations, our research provides an in-depth exploration of the effects of arsenic doping in OTS materials, paving the way for the design and application of advanced selectors. | en_US |