dc.description.abstract | Global warming has been widely discussed by various countries, and environmentally friendly renewable energy has become a common goal. With the advancement of technology, thermoelectric materials have emerged as one of the best options for energy transition. These materials can convert heat into electricity by utilizing the temperature difference between the two ends of the material, enabling the secondary use of waste heat and improving energy efficiency. This makes them suitable for applications in automobiles, wearable devices, aerospace technology, and more.
The characteristics exhibited by each type of thermoelectric material vary. Oxide semiconductors are commonly used in research due to their excellent thermal stability, non-toxicity, low cost, environmental friendliness, and relatively easy fabrication. By studying the electrical performance of individual samples, we can determine the optimal doping ratios. By connecting N-type and P-type bulk materials in series, we can create thermoelectric devices and modules that allow the output voltage generated by the bulk materials to be combined, producing sufficient electrical power.
This study investigates zinc oxide (ZnO) thermoelectric materials. By doping ZnO with 2 at% Al2O3 and CeO2, N-type materials were created, while the P-type material was obtained by doping ZnO with 0.1536 at% ZnP. Aluminum metal sheets were used as the contact metal between the N-type and P-type samples. Conductive silver paste and WU-4 solder were employed to fabricate the thermoelectric module, followed by subsequent measurements of output voltage, short-circuit current, and output power. | en_US |