博碩士論文 111521127 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator鄧福欣zh_TW
DC.creatorFu-Hsin Tengen_US
dc.date.accessioned2024-8-7T07:39:07Z
dc.date.available2024-8-7T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111521127
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究提出了一種使用區間二型遞迴模糊神經網路估測器之智慧型步階回歸控制,能夠修正非線性時變系統固有的非線性和時變控制特性。在區間二型遞迴模糊類神經網路估測器之智慧型步階回歸控制中,設計步階回歸控制法則來穩定閉環控制系統,並使用區間二型遞迴模糊神經網路來估計步階回歸設計中的總集不確定項。最初,非線性步階回歸控制的逐步設計被設定用於追蹤週期性參考軌跡,總集不確定項為保守常數。然而,實際應用通常涉及未知且難以預測的總集不確定項,為解決此問題引入區間二型遞迴模糊神經網路來即時估計總集不確定性。應用李亞普諾夫穩定性方法來確保漸近穩定性,從而製定區間二型遞迴模糊神經網路的線上學習演算法。為主動補償區間二型遞迴模糊神經網路的估計誤差亦提出自適應補償器。最後,本研究包括一個案例研究,展示具有最大每安培扭矩控制的同步磁阻馬達位置伺服驅動器的實驗結果。這些結果旨在驗證所提出的區間二型遞迴模糊神經網路智慧型步階回歸控制的有效性和穩健性。zh_TW
dc.description.abstractAn intelligent backstepping control with interval type-2 recurrent fuzzy neural network (IBSCIT2RFNN), which is capable of modifying the inherent nonlinear and time-varying control characteristics of a nonlinear time-varying system, is proposed in this research. In the IBSCIT2RFNN, a backstepping control (BSC) law is devised to stabilize the closed-loop control system and the lumped uncertainty in the design of BSC is estimated using an interval type-2 recurrent fuzzy neural network (IT2RFNN). Initially, a step-by-step design of a nonlinear BSC is formulated for tracking periodic reference trajectories, with uncertainties lumped by a conservative constant. However, practical applications often involve unknown and challenging-to-predict lumped uncertainty. To address this, an IT2RFNN is introduced for real-time estimation of the lumped uncertainty. The Lyapunov stability method is applied to ensure asymptotical stability, leading to the formulation of online learning algorithms for the IT2RFNN. In order to proactively compensate the estimation error of the IT2RFNN, an adaptive compensator is also presented. Finally, this research includes a case study presenting experimental results from a synchronous reluctant motor (SRM) position servo drive with maximum torque per ampere (MTPA) control. These results aim to validate the effectiveness and robust qualities of the proposed IBSCIT2RFNN.en_US
DC.subject步階回歸 控制zh_TW
DC.subject區間二型遞迴模糊神經網路步階回歸控制、區間二型遞迴模糊zh_TW
DC.subject區間二型遞迴模糊神經網路步階回歸控制、區間二型遞迴模糊 神經網路zh_TW
DC.subject同步磁阻馬達zh_TW
DC.subject每安培最大 轉 矩控制zh_TW
DC.subjectBackstepping controlen_US
DC.subjectintelligent backstepping control with interval type-2 recurrent fuzzy neural networken_US
DC.subjectinterval type-2 recurrent fuzzy neural networken_US
DC.subjectsynchronous reluctant motoren_US
DC.subjectmaximum torque per ampereen_US
DC.title使用 區間二型遞迴模糊類神經網路估 測器 之 非線性時變系統 之 智慧型步階回歸控制zh_TW
dc.language.isozh-TWzh-TW
DC.titleIntelligent Backstepping Control of Nonlinear Time-Varying System with Interval Type-2 Recurrent Fuzzy Neural Network Estimatoren_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明