博碩士論文 111521130 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator賴泓誌zh_TW
DC.creatorHung-Chih Laien_US
dc.date.accessioned2025-1-22T07:39:07Z
dc.date.available2025-1-22T07:39:07Z
dc.date.issued2025
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111521130
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract因從大腦發送訊號到執行動作的過程可大致分為籌劃、準備、執行三個階段,而根據執行任務的不同所需要的執行時間也有所不同,故運動前腦波可以當作判斷動作判斷的穩定依據,本研究所偵測的腦電波包含整個執行的過程,透過分析運動前的腦波變化,訓練一個深度學習的模型,能夠根據腦波數據預測動作,克服腦波發送信號到動作執行的時間延遲,實現更高速且穩定的即時控制。 本研究採用了六通道的LSTM(長短期記憶網絡)結合Multi-head Attention機制的模型架構。LSTM負責編碼腦波序列數據,保留時間信息,而Attention機制根據序列中的重要部分進行動態加權,增強模型對運動意圖的識別能力。實驗設計包括四種運動狀態(左手、右手、雙手按鍵前進及休息),受試者在這些狀態下生成腦波數據作為訓練資料。系統分為線下與線上階段:線下階段受試者執行按鍵操作以生成運動前的腦波信號,並用於訓練模型;在線上階段會利用平滑視窗每隔0.1秒輸出一次模型的結果,並在動作的決策階段加入投票機制,以達到受試者可以利用即時腦波信號控制虛擬環境中的角色移動。 實驗結果顯示,六位參與者的線下模型平均準確率達到86.3%,並透過ERD/ERS分析驗證了運動觀察能有效激活運動相關腦波區域,增強運動準備狀態。此外,基於運動前腦波的控制系統相比傳統肌電圖系統展現了更低的延遲與更高的即時性。這項研究提供了一種創新的腦波訓練系統,未來可應用於神經康復、虛擬實境交互以及腦機介面技術,最終期望實現僅依靠腦波信號進行行為控制,而無需實際的身體運動。zh_TW
dc.description.abstractThe process of transmitting signals from the brain to execute actions can be broadly divided into three stages: planning, preparation, and execution. The required execution time varies depending on the specific task. Thus, pre-movement brainwaves can serve as a stable basis for predicting actions. This study detects brainwaves covering the entire execution process and analyzes pre-movement brainwave changes to train a deep learning model. This model predicts actions based on brainwave data, overcoming the time delay between brain signal transmission and action execution, enabling faster and more stable real-time control. This study employs a six-channel LSTM (Long Short-Term Memory) network combined with a Multi-head Attention mechanism. The LSTM encodes brainwave sequence data, retaining temporal information, while the Attention mechanism dynamically weights critical parts of the sequence, enhancing the model′s ability to identify movement intentions. The experimental design includes four movement states (left hand, right hand, both hands pressing keys to move forward, and rest). Brainwave data generated by participants in these states served as training data. The system comprises offline and online phases: in the offline phase, participants performed key-press operations to generate pre-movement brainwave signals for model training; in the online phase, a sliding window outputs the model′s results every 0.1 seconds, and a voting mechanism is applied during the decision phase to enable participants to control a virtual environment character′s movements using real-time brainwave signals. The experimental results show that the offline models achieved an average accuracy of 86.3% across six participants. ERD/ERS analysis verified that observing movements effectively activates brain regions associated with motor activity, enhancing the state of movement preparation. Moreover, compared to traditional electromyography (EMG) systems, the brainwave-based control system demonstrated lower latency and higher real-time performance. This study provides an innovative brainwave training system with potential applications in neurorehabilitation, virtual reality interaction, and brain-computer interface technologies. Ultimately, the goal is to enable behavior control purely through brainwave signals, without requiring actual physical movement.en_US
DC.subject腦機介面zh_TW
DC.subject深度學習zh_TW
DC.subject運動前腦波zh_TW
DC.subjectBrain-Computer Interfaceen_US
DC.subjectDeep Learningen_US
DC.subjectPre-Movement EEGen_US
DC.title應用深度學習模型偵測動作前腦波訊號 於虛擬環境中之即時人物控制zh_TW
dc.language.isozh-TWzh-TW
DC.titleReal-Time Character Control in Virtual Environments Using Deep Learning to Detect Pre-Movement EEG Signalsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明