博碩士論文 111522071 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator張凱東zh_TW
DC.creatorKai-Tung Changen_US
dc.date.accessioned2024-8-19T07:39:07Z
dc.date.available2024-8-19T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111522071
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract同時定位與地圖構建(SLAM)系統分為傳統方法和基於機器學習的方法。傳統的 SLAM 系統採用幾何和概率模型在靜態環境中實現高精度,但在動態環境中面臨計算複雜性和適應性的挑戰。基於機器學習的 SLAM 系統利用深度學習,擅長處理非結構化數據和動態場景,但需要大量訓練數據,並且通常缺乏可解釋性。 我們的目標是通過結合深度學習的模型來增強傳統的 SLAM 系統,使傳統的 SLAM 系統更加強大和全面。本論文在 ?3???? 框架下優化和加速了點雲渲染過程,並利用深度學習模型解決了因光達特性導致的建圖隙縫與漏洞。zh_TW
dc.description.abstractSimultaneous Localization and Mapping (SLAM) systems are divided into traditional and machine learning-based methods. Traditional SLAM employs geometric and probabilistic models to achieve high precision in static environments but faces challenges with computational complexity and adaptability in dynamic environments.Machine learning-based SLAM, utilizing deep learning, excels in handling unstructured data and dynamic scenarios but requires substantial training data and often lacks interpretability. We aim to enhance traditional SLAM systems by incorporating the advantages of deep learning model, making traditional SLAM systems more robust and comprehensive. In this paper, we optimize and accelerate the point cloud rendering process under the ?3???? framework and use a deep learning model to solve the mapping gaps caused by the characteristics of LiDARen_US
DC.subject同時定位與地圖構建zh_TW
DC.subjectSimultaneous localization and mappingen_US
DC.subjectSLAMen_US
DC.titleAccelerated Point Cloud Rendering and Density Enhancement via Depth Completion: An Improved ?3???? SLAM System Implementationen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明