博碩士論文 111522138 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator黃意勛zh_TW
DC.creatorYi-Hsun Huangen_US
dc.date.accessioned2024-7-23T07:39:07Z
dc.date.available2024-7-23T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111522138
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract斯格明子賽道記憶體(Sky-RM)因其高存儲密度的潛力而備受關注, 尤其是對於資料儲存需求不斷增長的現今尤為重要。Sky-RM 利用斯格明子 的奈米尺度尺寸,與傳統記憶體技術相比顯著減少了物理空間需求。然而, 由於其獨特的特性,包括位移、生成和消除,如果缺乏有效的演算法來管 理這些操作,Sky-RM 的整體性能可能顯著低於傳統的動態隨機存取記憶體 (DRAM)。 因此,本論文致力於開發一種具有高並行性、低延遲、低能耗和高空 間利用率的資料擺放方式。此外,我們將我們的方法應用到基於隨機森林 的機器學習框架中,以檢驗是否實現了高平行度以及延遲和能耗的減少。zh_TW
dc.description.abstractSkyrmion-based Racetrack Memory(Sky-RM) has gained attention due to its potential to offer high storage density, which is increasingly critical as the demand for data storage continues to grow. Sky-RM leverages the nanoscale size of skyrmions, allowing for a significant reduction in physical space requirements compared to traditional memory technologies. However, due to its unique characteristics, including shifting, generating, and eliminating, Sky-RM can exhibit significantly poorer overall performance compared to traditional DRAM if it lacks a robust algorithm to manage these operations effectively. Therefore, this paper is dedicated to develop a high parallelism, low latency, low energy consumption and high space utilization placement strategy. Furthermore, we integrate our method onto the random forest based machine learning framework to see whether high parallelism and reductions in latency and energy consumption have been achieved.en_US
DC.subject斯格明子zh_TW
DC.subject賽道記憶體zh_TW
DC.subject隨機森林zh_TW
DC.subject高平行度zh_TW
DC.subjectSkyrmionen_US
DC.subjectRacetrack memoryen_US
DC.subjectRandom foresten_US
DC.subjectParallelismen_US
DC.titlePlanting a Forest in Sky: Harnessing Parallelism in Skyrmion Racetrack Memory for Efficient Random Forest Data Placementen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明