博碩士論文 111523060 完整後設資料紀錄

DC 欄位 語言
DC.contributor通訊工程學系zh_TW
DC.creator游知欣zh_TW
DC.creatorChih-Hsin Yuen_US
dc.date.accessioned2024-8-16T07:39:07Z
dc.date.available2024-8-16T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111523060
dc.contributor.department通訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract偵測不同機種的無人機對於確保安全合法使用和防範潛在風險至關重要,本文利用視覺偵測的方法對無人機進行偵測,以 YOLOv8 物件偵測模型對六種不同型態的無人機進行影像辨識、分類。根據無人機在影像上為小物件的特性透過注意力機制對模型進行改良,使模型更加注重部分的影像訊息,抓取小物件的特徵;另外一方面,因應無人機的移動特性,在模型中加入可變形卷積,透過可變形卷積中加入偏移量的機制,使模型影像更能準確的偵測無人機。實驗結果表明,本文提出的在原始 YOLOv8 架構中加入注意力機制以及可變形卷積地模型比原始 YOLOv8 模型有更高的精確率。zh_TW
dc.description.abstractDetecting different drone models is crucial for ensuring safe andlegal use while mitigating potential risks.In this paper employs visual detection using the YOLOv8 model to identify and classify six drone types.To enhance small object detection, attention mechanisms are integrated to focus on specific image details. Additionally, deformable convolutionsare included to address drone movement, improving detection accuracy.Results indicate that the proposed model, with attention mechanisms anddeformable convolutions, surpasses the original YOLOv8 model in precision.en_US
DC.subject無人機偵測zh_TW
DC.subject視覺偵測zh_TW
DC.subject物件偵測zh_TW
DC.subject注意力機制zh_TW
DC.subjectYOLOv8zh_TW
DC.subjectDrone Detectionen_US
DC.subjectVisual Detectionen_US
DC.subjectObject Detectionen_US
DC.subjectAttention Mechanismen_US
DC.subjectYOLOv8en_US
DC.title改良型 YOLOv8 模型於 nVIDIA 高效能運算器之即時無人機影像偵測與追蹤zh_TW
dc.language.isozh-TWzh-TW
DC.titleModified YOLOv8 Model for Real-Time Drone Image Detection and Tracking with nVIDIA HPCen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明