博碩士論文 111525008 完整後設資料紀錄

DC 欄位 語言
DC.contributor軟體工程研究所zh_TW
DC.creator陳正浩zh_TW
DC.creatorZheng-Hao Chenen_US
dc.date.accessioned2024-7-30T07:39:07Z
dc.date.available2024-7-30T07:39:07Z
dc.date.issued2024
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=111525008
dc.contributor.department軟體工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract自定義編碼方式可有效提升深度學習模型在監督式任務的表現,但自定義編碼方式在自監督對比學習的效果則尚未被大規模驗證。本論文設計並實現了一個靈活的自定義特徵編碼框架,讓研究者可以大規模比較比較不同編碼方式在自監督任務的效果。同時,我們提出了一種新的編碼方式,探索其在不同資料集上的潛力和應用價值。zh_TW
dc.description.abstractCustom encoding methods can effectively enhance the performance of deep learning models in supervised tasks. However, custom encoding′s effectiveness in self-supervised contrastive learning has yet to be extensively validated. This paper designs and implements a flexible framework for custom feature encoding evaluation, allowing researchers to comprehensively compare the effects of different encoding methods on self-supervised tasks. Additionally, we propose a new encoding method to explore its potential and application value across various datasets.en_US
DC.subject自監督學習zh_TW
DC.subject對比學習zh_TW
DC.subject表格資料zh_TW
DC.subject自定義編碼zh_TW
DC.subjectSelf-supervised learninen_US
DC.subjectContrastive learninen_US
DC.subjecttabular dataen_US
DC.subjectcustom encodingen_US
DC.title半監督學習下自定義編碼特徵的大規模比較zh_TW
dc.language.isozh-TWzh-TW
DC.titleA Large-scale Comparison of Customized Feature Encodings under Semi-supervised Learningen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明