dc.description.abstract | Spitsbergen Island, part of the Svalbard archipelago, is located within the Arctic Circle. In recent years, climate change has significantly altered the climatic conditions in the polar region, affecting the distribution of permafrost and the active layer. To monitor and analyze the changes in the permafrost and active layer, we conducted geophysical surveys near the coastal plains of Kaffiørya in northwestern Spitsbergen during the summers of 2022 and 2023, using two-dimensional Electrical Resistivity Imaging (ERI) and Ground Penetrating Radar (GPR).
Our study involved two survey lines. One was a long line extending 140 meters from the Polish Polar Station towards the coastline, perpendicular to the shore, and was measured in both 2022 and 2023. In 2023, we added a 40-meter short line intersecting the long line, as well as five parallel survey lines on the tundra adjacent to the Polar Station. The short line near the coast passed through the meteorological station of the Polar Station to understand the distribution of permafrost in different directions. The five parallel survey lines on the tundra were spaced 1 meter apart and were each 40 meters long. In addition to conducting two-dimensional profiling, we also developed a three-dimensional model of this area to gain a clearer understanding of the resistivity trends.
In this study, the electrical resistivity method employed a Wenner array with an electrode spacing of 1 meter to obtain better resolution imaging. The Ground Penetrating Radar used a 100 MHz antenna. The results of the study showed that, compared to 2022, the resistivity profile of the long line in 2023 displayed more low-resistivity areas and fewer high-resistivity areas. Meteorological data indicated an increase in both surface temperature and moisture content in 2023. It can be inferred that rising temperatures have caused more frequent rainfall events, turning previously high-resistivity unsaturated sediments into saturated sediments, thereby lowering resistivity. In the GPR profile, the strong signal reflection indicates the contrast between the active layer and the permafrost.
Additionally, the resistivity profiles of the short line and the tundra lines showed a clear boundary between high and low resistivity, indicating that the depth of the active layer is approximately 1.3 meters, with a moderately high resistivity zone at a depth of 4-5 meters, likely representing the permafrost. These results demonstrate that electrical resistivity and Ground Penetrating Radar methods provide valuable information and insights into the distribution of the active layer and permafrost. | en_US |