DC 欄位 |
值 |
語言 |
DC.contributor | 土木工程研究所 | zh_TW |
DC.creator | 陳明聖 | zh_TW |
DC.creator | Ming-Shen Chen | en_US |
dc.date.accessioned | 2001-7-11T07:39:07Z | |
dc.date.available | 2001-7-11T07:39:07Z | |
dc.date.issued | 2001 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=88322046 | |
dc.contributor.department | 土木工程研究所 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本文主要是以模態疊加法(mode superposition method)來分析車橋互制(vehicle—bridge interaction)的現象,在文中主要針對單跨橋和二、三跨連續橋來做分析;並建立列車模型,進而推導整理車橋互制方程式(vehicle-bridge interaction eq.),其次引入一正弦函數;模擬橋樑軌道面凹凸,最後透過Runge-Kutta Method做數值分析,探討車橋之振動反應。
本文之優點:相較於有限元素法,本文所採之方法較具彈性與準確性;本文之缺點:只能分析定速問題。 | zh_TW |
dc.description.abstract | In this paper using mode superposition method to analyize the phenomena of vehicle-bridge interaction. Now that we discuss the vehicle-bridge interaction. At first we should make a dicision on the models of bridge and vehicle. There,we aim at single-span bridge , 2 and 3 multi-span bridge. Besides we induct a sine function in order to model the roughness of the orbits which are on the bridge. After reorganizing we will get vehicle-bridge eq. At last we can discuss the vibration between the vehicle and bridge through Runge-Kutta Method ;One of the neumerical methods.
Comparing to FEM the method chosen here is more flexibility and reliability. However,my program can analyze const velocity problem only. | en_US |
DC.subject | 凹凸模擬 | zh_TW |
DC.subject | 振動 | zh_TW |
DC.subject | 衝擊係數 | zh_TW |
DC.subject | 車橋互制 | zh_TW |
DC.subject | vehicle-bridge interaction | en_US |
DC.subject | vibration | en_US |
DC.title | 高速列車行經連續橋之車橋反應分析 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |