博碩士論文 88423004 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊管理研究所zh_TW
DC.creator陳柏翰zh_TW
DC.creatorBong-Han Changen_US
dc.date.accessioned2001-6-26T07:39:07Z
dc.date.available2001-6-26T07:39:07Z
dc.date.issued2001
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=88423004
dc.contributor.department資訊管理研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract資料挖礦技術被稱為對資料作最佳的應用,它是一個新的研究領域,其目的在於透過自動化處理,從大量的資料中,挖掘出隱藏在其中的有用資訊、樣式,以對決策階層有所幫助。目前不論是在科學上或商業上,均大量使用資料挖礦的技術,來尋找出有用的規則、資訊,以幫助科學家或決策者進行正確的決策,且已有不錯的應用成效。 本論文主要是以約略集合(Rough Set)的方法,及資料挖掘技術中的關連規則的方法為基礎,發展出適合多屬性序列資料的演算法--RSS(Rough Set Sequence)演算法。此演算法先對所有的條件屬性進行篩選,只剩下最重要的條件屬性,而後再進行大集合序列的挖掘,最後在進行特徵關連的挖掘。而在本論中,我們以股市交易資料為例,將可能影響公司股價當作條件屬性,而將公司股價漲跌情形當作是決定屬性。由於造成股價漲跌情形的因素眾多,但實際上,某些因素可能對甲公司而言,其影響程度較為嚴重,但對乙公司而言,其影響程度可能較為輕微,例如,在本論中討論到影響股價漲跌的八個因素,並非每個屬性都有絕對的影響,因此我們在進行序列關連規則的挖掘前,先將對決策屬性有重要影響的條件屬性找出,過濾掉對決策屬性無幫助的條件屬性,接著再進行序列樣式的尋找,找出最長的序列樣式後,最後進行關連規則的尋找。zh_TW
DC.subject序列樣式zh_TW
DC.subject 約略集合zh_TW
DC.subject 資料挖掘zh_TW
DC.subject 關連規則zh_TW
DC.title以RSS演算法挖掘股市交易資料之研究 zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明