博碩士論文 88522013 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程研究所zh_TW
DC.creator方淑芬zh_TW
DC.creatorShu-Fen Fangen_US
dc.date.accessioned2001-7-5T07:39:07Z
dc.date.available2001-7-5T07:39:07Z
dc.date.issued2001
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=88522013
dc.contributor.department資訊工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract核糖體核糖核酸是參與蛋白質合成的重要角色,而其穩定時所呈現的二次結構更是影響功能的重要因素;長度為4的U字型環狀結構,發現古細菌及真細菌在特定位置上會出現序列不同的U字型環狀結構,由於二級結構上的序列多而複雜,本文應用資料探採(Data Mining)技術於核糖體小次單元核糖核酸的二級結構之環狀結構的組合,從探採所得到的序列型樣中,可明顯看出不同物種間存在數個相似結構的組合,這些結構的組合可以幫助生物學家進行其他有關核糖體功能的研究。將得到的相似結構序列應用於決策樹(Decision Tree Induction)的分類技術,從結果得知,相似的結構序列確實是物種分類時的重要資訊。從我們進行的實驗中,包含分類及建演化樹的結果,得知這個研究是可行且富有價值的。zh_TW
dc.description.abstractSome structural motifs, like tetra-loops, in ribosomal RNA are known to functionally implicate in virtually every aspect of protein synthesis. Our aim in this study is to discover common structural motifs (CSMs), which possibly are related to specific domain or functions, within the secondary structures of ribosomal RNAs. After applying data mining techniques to mine the common structural motifs, a machine learning approach is used to find significant discriminating common structural motifs from groups of organisms. By applying to several data sets constructed in this study, it suggests that the CSMs can provide effective information to classify organisms and help biologists understand the functions of ribosomal RNA. From the experiments of the classification of organisms and the construction of phylogenetic trees by CSMs mined, we find our approach is promising.en_US
DC.subject二級結構zh_TW
DC.subject 核糖體zh_TW
DC.subject 資料探勘zh_TW
DC.subjectcommon motifsen_US
DC.subject data miningen_US
DC.subject rRNAen_US
DC.subject secondary structuresen_US
DC.title應用資料探採於核糖體核糖核酸二級結構之分析 zh_TW
dc.language.isozh-TWzh-TW
DC.titleMining Common Structural Motifs in SSU 16 S Ribosomal RNA Secondary Structures en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明