DC 欄位 |
值 |
語言 |
DC.contributor | 資訊管理學系 | zh_TW |
DC.creator | 許大鈞 | zh_TW |
DC.creator | Ta-Chun Hsu | en_US |
dc.date.accessioned | 2002-6-28T07:39:07Z | |
dc.date.available | 2002-6-28T07:39:07Z | |
dc.date.issued | 2002 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=89423008 | |
dc.contributor.department | 資訊管理學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 近年來本國金融機構信用快速擴充,而金融機構的營收重於放款業務,但提高放款業務比例並不能代表銀行利潤的增加,放款的風險為逾期放款,必須有好的放款品質,方不致使逾放比率增加,因此有效控管信用放款的質與量,成為目前各金融機構經營的首重目標。為減少逾放比率、提高放款量、爭取審核時間,利用知識管理之知識再使用(reuse)的審核機制是必需的,客觀科學化的評分方法更能使徵信資料得到迅速的整理與分析,以利信用放款的決策。
本研究以國內銀行業申貸案例為研究對象,採用案例式推論法(Case Based Reasoning)結合基因演算法(Genetic Algorithm)發展信用評等決策輔助系統,探討國內銀行業者使用之個人信用評分表之表列變數,並將歷史資料分為訓練及測試案例,支援本系統學習出最佳的案例屬性權重,應用在案例的擷取過程,以擷取新申貸案例的最相似歷史案例,建立最適之信用評等模式,從而預測新申貸者授信的成敗,並提供相似的案例供信用審核人員進行決策。研究結果顯示:一、大量訓練案例數會有較佳的預測申貸成敗之結果。二、以k最臨近理論,投票案例數為5時,正常案例預測率及滯繳案例預測率皆可超過75%以上。三、使用投票法為低風險低獲利策略,不使用投票法為高風險高獲利策略。 | zh_TW |
DC.subject | 案例式推論法 | zh_TW |
DC.subject | 基因演算法 | zh_TW |
DC.subject | k最臨近理論 | zh_TW |
DC.subject | 個人信用評等 | zh_TW |
DC.title | 應用案例式推論與基因演算法於信用評等決策輔助系統 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |