DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 陳正夫 | zh_TW |
DC.creator | Cheng-Fu Chen | en_US |
dc.date.accessioned | 2003-6-27T07:39:07Z | |
dc.date.available | 2003-6-27T07:39:07Z | |
dc.date.issued | 2003 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=90221010 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在linear system的領域裡存在著一個問題:我們知道一個ample divisor 在乘上若干倍數之後會變成一個 very-ample divisor,但這個倍數應該是多少,才是最適當的呢?在這篇論文裡我們以toric variety上的情形來做討論,並由G. Ewald與U. Wessels兩人在1991年所發表的論文中的定理知道,若是此toric variety 的維度是n,則對於每一個在它上面的ample divisor,乘上 n-1倍之後必定會是very ample。
上述的定理在G. Ewald與U. Wessels的論文裡是以反證法證明的,而本篇論文主要將用一種相反的方法來證明這個定理,並以實際的例子來說明其使用方法。 | zh_TW |
dc.description.abstract | In the study of very-ampleness, we consider a main theorem which
was given by G.Ewald and U.Wessels in 1991. The result of this
main theorem provide a better bound for an ample divisor to be
very ample. In the original proof, this theorem is proved by
contradiction, though we will prove it by using the contrast
method. | en_US |
DC.subject | very ample | en_US |
DC.subject | ample | en_US |
DC.title | A remark on very-ampleness in Toric geometry | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | A remark on very-ampleness in Toric geometry | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |