DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 李佳萍 | zh_TW |
DC.creator | Chia-Ping Li | en_US |
dc.date.accessioned | 2004-6-2T07:39:07Z | |
dc.date.available | 2004-6-2T07:39:07Z | |
dc.date.issued | 2004 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=91221005 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在此論文中,我們探討「正規壓縮算子」與「正規延拓算子」的性質。在「正規壓縮算子的數值域」(參考文獻8)中有如下的結果:『對於n+1階正規矩陣N的兩個n階正規壓縮算子A與B,A與B么正等價,若且唯若,A與B的所有特徵值都相同(包含重根)』。這篇論文的主要目地則是將上述結果推廣,並分成N是么正矩陣與N是正規矩陣兩種情形來探討。當N是么正矩陣時,A與B么正等價,若且唯若,A與B有超過半數的特徵值相同(包含重根);當N是正規矩陣時,A與B么正等價,若且唯若,A與B有n-1個特徵值相同(包含重根)。 | zh_TW |
dc.description.abstract | In this thesis, we have two main results. First, we present the n-dimensional compressions of an (n+1)- dimensional unitary matrix are determined, up to unitary equivalence, by only half of their eigenvalues (counting multiplities). Second, we present the n-dimensional compressions of an (n+1)- dimensional normal matrix are determined, up to unitary equivalence, by their n-1 eigenvalues (counting multiplities). | en_US |
DC.subject | 正規延拓算子 | zh_TW |
DC.subject | 正規壓縮算子 | zh_TW |
DC.subject | Normal Compressions | en_US |
DC.subject | Normal Dilations | en_US |
DC.title | 正規壓縮算子與正規延拓算子 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Normal Compressions and Normal Dilations | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |