博碩士論文 91241006 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator張淵zh_TW
DC.creatorYuan Changen_US
dc.date.accessioned2008-7-19T07:39:07Z
dc.date.available2008-7-19T07:39:07Z
dc.date.issued2008
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=91241006
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本篇論文分為兩個部分。部分Ⅰ在探討對於具有奇異來源項的純量平衡定律的Riemann問題的Lax型解的存在性與唯一性。部分Ⅱ在探討對於擬線性波方程類的廣域Lipschitz連續解。 在部分Ⅰ我們對於純量非線性平衡定律的Riemann問題給予構造廣義化熵解的新途徑。方程式的來源項為奇異的,因其為δ函數與不連續函數的乘積。將來源項重新公式化地闡述,我們研究對應的擾動Riemann問題。擾動Riemann解的存在性與穩定性被建立,且Riemann問題的廣義化熵解被構造,其為對應的擾動Riemann解的極限。廣義化熵解的自我相似性亦得到,使得Lax方法可被擴展至具有奇異來源項的純量非線性平衡定律。 在部分Ⅱ我們對於擬線性波方程的Cauchy問題類研究廣域Lipschitz連續解的存在性。應用Lax方法與廣義化Glimm方法,我們構造對應的擾動Riemann問題的近似解且建立解的導數的廣域存在性。那麼,經由對於方程式的來源項證明其殘數為弱收歛,可完成廣域Lipschitz連續解的存在性。zh_TW
dc.description.abstractThis thesis is divided into two parts. The part I is: Existence and Uniqueness of Lax-Type Solutions to the Riemann Problem of Scalar Balance Law with Singular Source Term,and the part II is: Globally Lipschitz Continuous Solutions to a Class of Quasilinear Wave Equations. In the part I of the thesis we give a new approach of constructing the generalized entropy solutions to the Riemann problem of scalar nonlinear balance laws. The source term of equation is singular in the sense that it is a product of delta function and a discontinuous function. By re-formulating the source term, we study the corresponding perturbed Riemann problem. The existence and stability of perturbed Riemann solutions is established, and the generalized entropy solutions of Riemann problem are constructed as the limit of corresponding perturbed Riemann solutions. The self-similarity of generalized entropy solutions is also obtained so that Lax’’s method can be extended to the scalar nonlinear balance laws with singular source terms. In the part II of the thesis we investigate the existence of globally Lipschitz continuous solutions to a class of Cauchy problem of quasilinear wave equations. Applying the Lax’’s method and generalized Glimm’’s method, we construct the approximate solutions of the corresponding perturbed Riemann problem and establish the global existence for the derivatives of solutions. Then, the existence of global Lipschitz continuous solutions can be carried out by showing the weak convergence of residuals for the source term of equation. Keywords. Conservation laws; Nonlinear balance laws; Riemann problems; Perturbed Riemann problems; Characteristic method; Lax’’s method; Quasilinear wave equations; Hyperbolic systems of balance laws; Cauchy problem; Generalized Glimm’’s method.en_US
DC.subject廣義化Glimm方法zh_TW
DC.subjectCauchy問題zh_TW
DC.subject平衡定律之雙曲線系統zh_TW
DC.subject擬線性波方程zh_TW
DC.subjectLax方法zh_TW
DC.subject特徵方法zh_TW
DC.subject擾動Riemann問題zh_TW
DC.subjectRiemann問題zh_TW
DC.subject非線性平衡定律zh_TW
DC.subject守恒定律zh_TW
DC.subjectConservation lawsen_US
DC.subjectLax's methoden_US
DC.subjectCharacteristic methoden_US
DC.subjectPerturbed Riemann problemsen_US
DC.subjectRiemann problemsen_US
DC.subjectQuasilinear wave equationsen_US
DC.subjectHyperbolic systems of balance lawsen_US
DC.subjectCauchy problemen_US
DC.subjectNonlinear balance lawsen_US
DC.subjectGeneralized Glimm's methoden_US
DC.title有關非線性平衡定律之柯西問題的廣域弱解zh_TW
dc.language.isozh-TWzh-TW
DC.titleGlobal Weak Solutions to the Cauchy Problem ofNonlinear Balance Lawsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明