DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 洪炳煌 | zh_TW |
DC.creator | Bing-Huang Hong | en_US |
dc.date.accessioned | 2006-1-1T07:39:07Z | |
dc.date.available | 2006-1-1T07:39:07Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=92221004 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在本論文中,我們首先學習一些關於友矩陣數值域的基本性質。參考文獻1特別探討可分解的友矩陣,同時還證明一個友矩陣的數值域是以原點為圓心的圓盤,其充分必要條件在於這個友矩陣是Jordan區塊。而我們在此僅針對那些數值域為橢圓形的可分解友矩陣作討論,並試圖給這些矩陣一個完整的特徵。
從論文第三節可以看出所有的4 × 4可分解友矩陣將完全被解決,原因是我們會證明一個4 × 4可分解友矩陣的數值域是橢圓,若且為若,這個矩陣的光譜為{a,-a,i/a,-i/a},其中|a|≧sqrt(1+sqrt(2));或者這個矩陣的光譜為{a,ai,-1/a,-i/a},其中|a|≧1+sqrt(2)。最後,我們在論文的第四節就把討論的對象擴大為6 × 6可分解友矩陣。 | zh_TW |
dc.description.abstract | In this thesis, we study some properties of numerical ranges of companion matrices. Previous works [1] in this respect are the criterion for these matrices to be reducible and show that the numerical range of a companion matrix is a circular disc centered at the origin if and only if the matrix equals the Jordan block. Here we want to give a complete characterization for reducible companion matrices with elliptical numerical range.
In Section 3, 4 × 4 reducible companion matrices will be completely solved. We show that a 4 × 4 reducible companion matrix A has an ellipse as its numerical range if and only if either σ(A)={a,-a,i/a,-i/a} where |a|≧sqrt(1+sqrt(2)), or σ(A)={a,ai,-1/a,-i/a} where |a|≧1+sqrt(2). Here σ(A) denotes the spectrum of the matrix A. In Section 4, we discuss the cases for 6 × 6 reducible companion matrices. | en_US |
DC.subject | 可分解的 | zh_TW |
DC.subject | 友矩陣 | zh_TW |
DC.subject | 數值域 | zh_TW |
DC.subject | Companion Matrix | en_US |
DC.subject | Reducible | en_US |
DC.subject | Numerical Range | en_US |
DC.title | 可分解友矩陣之數值域 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Numerical Ranges of Reducible Companion Matrices | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |