DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 陳宣伃 | zh_TW |
DC.creator | Hsuan-Yu Chen | en_US |
dc.date.accessioned | 2005-7-13T07:39:07Z | |
dc.date.available | 2005-7-13T07:39:07Z | |
dc.date.issued | 2005 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=92221010 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 論文摘要
這篇論文主要研究離散時間遲滯的修正型RTD 雙神經元網路之全局指數穩定。在加入三種不同邊界條件後得到三組修正型RTD 雙神經元細胞網路( DCNNs )的微分方程;每一組微分方程都包含了兩個相似的細胞,每個細胞都有非線性瞬時的自身回饋,並藉由Lipshitz非線性性質與其他細胞互相連結,但卻有不同的離散時間遲滯。每組微分方程都包含外界的輸入,在自身回饋及細胞間連結長度加入適當條件後,建造適當的Lyapunov functionals ,可以驗證出其唯一平衡點具有全局指數穩定的特性;若是給定週期之外界輸入,則可驗證出每
組微分方程的週期解也具有全局指數穩定的特性。最後我們也搭配一些數值結果來驗證理論分析。 | zh_TW |
dc.description.abstract | Abstract
In this thesis, we study the global exponential stability of the modi¯ed RTD-based two-neuron networks with discrete time delays. After imposing the periodic, Dirichlet or Neumann boundary conditions, the resulting systems consist of two identical neurons, each possessing nonlinear instantaneous self-feedback
and connected to the other neuron via a Lipschitz nonlinearity but with di®erent
discrete time delays. For each two-neuron system with constant external inputs, under appropriate conditions on the self-feedback and connection strengths, we prove the unique equilibrium is globally exponentially stable by constructing a
suitable Lyapunov functional. On the other hand, for such two-neuron systems with periodic external inputs, combining the techniques of Lyapunov functional with the contraction mapping theorem, we propose some su±cient conditions
for establishing the existence, uniqueness and global exponential stability of the periodic solutions. Numerical results are also provided to demonstrate the theoretical analyses. | en_US |
DC.subject | equilibrium | en_US |
DC.subject | periodic solution | en_US |
DC.subject | global exponential stability | en_US |
DC.subject | Lyapunov functional | en_US |
DC.subject | discrete time delay | en_US |
DC.subject | contraction mapping theorem | en_US |
DC.subject | cellular neural network | en_US |
DC.title | Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays | en_US |
dc.language.iso | en_US | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |