博碩士論文 92521069 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator周均鴻zh_TW
DC.creatorJun-Hung Chouen_US
dc.date.accessioned2005-6-30T07:39:07Z
dc.date.available2005-6-30T07:39:07Z
dc.date.issued2005
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=92521069
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract摘 要 切換系統為混成系統的一種,它由許多的子系統和一組切換訊號所構成。具polytope形式的切換系統和T-S模糊模型切換系統是本論文所探討的兩種切換系統。我們先對這兩種系統提出其為可穩定的充分條件,並且針對可穩定的系統提出穩定性的設計方法,而在設計的過程當中,遭遇到求解雙線性不等式的問題,因此,我們亦提出了以疊代線性不等式的演算法求解此類雙線性不等式的問題,並且各舉了兩個例子,說明我們所提出方法的存在價值與優點。zh_TW
dc.description.abstractAbstract A switched system is a hybrid system that consists of several subsystems and a switching law indicating the active subsystem at each time instant. In this thesis, two categories of switched systems are considered. One is the switched system with polytopic uncertainties and the other is the switched T-S fuzzy system. Sufficient conditions are proposed for stabilizing the switched system with polytopic uncertainties and the switched T-S fuzzy system, respectively. The design methods are also proposed to stabilize these two switched systems. In design, we encounter the bilinear matrix inequalities (BLMIs) problem. An iterative linear matrix inequalities algorithm is proposed to solve the BLMI problems. Examples are given to illustrate the feasibility of the proposed results.en_US
DC.subject雙線性矩陣不等式zh_TW
DC.subject切換系統zh_TW
DC.subject線性矩陣不等式zh_TW
DC.subjectswitched systemen_US
DC.subjectbilinear matrix inequalityen_US
DC.subjectlinear matrix inequalityen_US
DC.title切換系統的穩定性分析與設計zh_TW
dc.language.isozh-TWzh-TW
DC.titleStability analysis and design of switched systemsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明