DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 劉桂瑛 | zh_TW |
DC.creator | Kuei-Ying Liu | en_US |
dc.date.accessioned | 2006-6-28T07:39:07Z | |
dc.date.available | 2006-6-28T07:39:07Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=93221001 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | n,k為自然數,一個非遞減正整數序列m1,m2,...,mk,我們稱它為n-realizable,如果{1,2,...,n}這個正整數集合,可以被分割成k個互不相交的子集S1,S2,...,Sk,使得對於每一個$1 leq i leq k$,Si的元素和為mi。在這一篇論文裡面,我們主要得到:四個正整數是n- realizable的充分、必要條件。 | zh_TW |
dc.description.abstract | For n,k $in$ N, a nondecreasing sequence of positive integers m1,m2,...,mk
is said to be n-realizable if {1,2,...,n} can be partitioned into k mutually disjoint
subsets S1,S2,...,Sk such that $sumlimits_{x in S_i}x=m_i$ for each $1 leq i leq k$. In this paper, we give a necessary and sufficient condition for a nondecreasing sequence of four positive integers to be n-realizable. | en_US |
DC.subject | n-realizable | en_US |
DC.title | n-realizable Quadruple | en_US |
dc.language.iso | en_US | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |