博碩士論文 93221006 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator賴家駿zh_TW
DC.creatorChia-chun Laien_US
dc.date.accessioned2007-7-3T07:39:07Z
dc.date.available2007-7-3T07:39:07Z
dc.date.issued2007
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=93221006
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在這篇文章我們考慮尤拉方程式在接近音速流量無變化可壓縮的管,在方程式出現的壓力項和管的位置有關。我們對這柯西問題的方程式,去架構一個區間的逼近解,這個逼近解是由黎曼問題的基本波和線性化方程式的逼近解所組合架構,線性化方程式的逼近解藉由使用”operator splitting”來架構。zh_TW
dc.description.abstractIn this paper we consider the compressible Euler equations of uniform duct in transonic flow. The pressure term appearing in the equations is also dependent on the location of the duct, which is considered as the product of the density of flow and a function of space. We construct a local approximate solution for the Cauchy problem of equations. This approximate solution is constructed as a combination of homogeneous elementary waves to the Riemann problem and an approximate solution of the linearized equations. The approximate solution of the linearized equations is constructed by the scheme of the operator splitting.en_US
DC.subject對接近音速流量zh_TW
DC.subject可壓縮尤拉方程式zh_TW
DC.subject黎曼問題.zh_TW
DC.subjecthyperbolic systems of conservation laws.en_US
DC.subjecttransonic flowen_US
DC.subjectRiemann problemen_US
DC.subjectoperator splitting methoden_US
DC.subjectCompressible Euler equationsen_US
DC.title對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解zh_TW
dc.language.isozh-TWzh-TW
DC.titleThe Construction of Local Approximate Solutions to The Cauchy Problem of Compressible Euler Equations in Transonic Flow.en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明