博碩士論文 93241002 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator吳政訓zh_TW
DC.creatorCheng-Hsun Wuen_US
dc.date.accessioned2009-7-4T07:39:07Z
dc.date.available2009-7-4T07:39:07Z
dc.date.issued2009
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=93241002
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract布朗運動(Brownian motion)是一個實用的數學模型 (Wiener (1923), Levy (1948), Ciesielski (1961)),在生物(Brown(1827))、物理(Eistein (1905), Mazo (2002))、經濟與財務工程(Bachelier (1900), Black and Scholes (1973)) 隨機微積分(Ito (1944))及許多領域上廣為研究及應用,成果豐碩, 影響深 遠。 雖然幾何布朗運動有著多元化的應用,但是無法涵蓋所有的隨機現象。因此推廣幾何布朗運動, 可以擴展適用範圍,此為本文之主要的目的。本文研究下列幾何布朗運動所推廣的隨機過程及其變化型式。 我們將研究此隨機過程之數學性質,討論其在財務工程的應用,並提出參數之統計推論。 zh_TW
dc.description.abstractBrownian motion is a rigorous mathematical model (Wiener (1923), Levy (1948), Ciesielski (1961)) with fruitful applications ranging from biology (Brown (1827)), physics (Einstein (1905), Mazo (2002)), economy and financial engineering (Bachelier (1900), Black and Scholes (1973)), to stochastic calculus (Ito (1944)), among others. Functional of Brownian motion is also useful in stochastic modeling. This is particularly true for geometric Brownian motion. For instance, it has been applied to model prices of stock (page 365 in Karlin and Taylor (1975), Black and Scholes(1973)), rice (Yoshimoto el al. (1996)), labor (page 363 in Karlin and Taylor (1975)) and others (Shoji (1995)). See Yor (2001) for more details. Although geometric Brownian motion has a great variety of applications, it can not cover all the random phenomena. It is then desirable to find a general model with geometric Brownian motion as a special model. The purpose of this paper is to investigate the generalizations of geometric Brownian motion and its variants. For the processes mentioned above, we will first study their mathematical properties. Next, we will discuss their applications in financial engineering. In practice, the parameters are unknown and have to be inferred from realizations of processes. We will present estimation and test procedures. en_US
DC.subject布朗運動zh_TW
DC.subject幾何布朗運動zh_TW
DC.subject永續憑證問題zh_TW
DC.subject選擇權定價zh_TW
DC.subject隨機過程之統計推論zh_TW
DC.subject財務工程zh_TW
DC.subjectBrownian motionen_US
DC.subjectgeometric Brownian motionen_US
DC.subjectperpetual warrantsen_US
DC.subjectoption pricingen_US
DC.subjectstatistical inference for stochastic processesen_US
DC.subjectfinancial engineeringen_US
DC.title幾何布朗運動之推廣與應用zh_TW
dc.language.isozh-TWzh-TW
DC.titleA generalization of geometric Brownian motion with applicationsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明