博碩士論文 942201021 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator王韻詞zh_TW
DC.creatorYun-Tsz Wangen_US
dc.date.accessioned2008-5-18T07:39:07Z
dc.date.available2008-5-18T07:39:07Z
dc.date.issued2008
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=942201021
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本篇論文主要研究在均勻網格中使用兩種迭代最小平方有限元素法求解具速度邊界值的穩態不可壓縮那維爾-史托克方程組。引入旋度當作新的未知變數,那維爾-史托克問題可改寫成一個擬線性速度-旋度-壓力一階方程組。我們提出兩種皮卡型迭代最小平方有限元素法求取此非線性一階問題的數值近似解,在每次迭代過程中使用一般的L2最小平方法或加權L2最小平方法去求解其相對應的歐辛問題。我們主要專注於此兩種迭代最小平方法在均勻網格上使用連續片狀多項式有限元素求解二維模型問題。數值實驗證明,對於具有平滑正確解的相同問題,在雷諾數較小的時候,L2最小平方解比加權L2最小平方解更準確;然而當雷諾數相對較大時,加權L2最小平方近似解似乎比L2最小平方近似解更好。最後,我們報告凹槽驅動流場的數值結果以驗證此類迭代最小平方有限元素法之效力。zh_TW
dc.description.abstractThis thesis is devoted to a numerical study of two iterative least-squares finite element schemes on uniform meshes for solving the stationary incompressible Navier-Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, the Navier-Stokes problem can be recast as a first-order quasilinear velocity-vorticity-pressure system. Two Picard-type iterative least-squares finite element schemes are proposed for approximating the solution to the nonlinear first-order problem. In each iteration, we apply the usual L2 least-squares scheme or a weighted L2 least-squares scheme to solve the corresponding Oseen problem. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that, for the same test problem with smooth exact solution, the L2 least-squares solutions are more accurate than the weighted L2 least-squares solutions for low Reynolds number flows, while for flows with relatively higher Reynolds numbers the weighted L2 least-squares approximations seem to be better than the L2 least-squares approximations. Finally, numerical results for driven cavity flows are also given to demonstrate the effectiveness of the iterative least-squares finite element approach.en_US
DC.subject有限元素法zh_TW
DC.subject那維爾-史托克方程組zh_TW
DC.subject迭代法zh_TW
DC.subject最小平方zh_TW
DC.subject凹槽驅動流場zh_TW
DC.subject歐辛方程組zh_TW
DC.subjectdriven cavity flowsen_US
DC.subjectOseen equationsen_US
DC.subjectleast squaresen_US
DC.subjectfinite element methodsen_US
DC.subjectiterative methodsen_US
DC.subjectNavier-Stokes equationsen_US
DC.title兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleOn Two Iterative Least-Squares Finite Element Schemes for Solving the Incompressible Navier-Stokes Equationsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明