DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 才維翰 | zh_TW |
DC.creator | Wei-han Tsai | en_US |
dc.date.accessioned | 2012-1-16T07:39:07Z | |
dc.date.available | 2012-1-16T07:39:07Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=942401004 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在我的博士論文裡面我考慮了一些有關 degree sequences 和 statuses問題。
在第二章裡面我在一些特殊的 families 找出哪些圖在那些我所指定的 family 是唯一的, 例如: trees, connected regular graphs, forests, unicyclic graphs 和 bicyclic graphs。
在第三章裡面我考慮的問題是如何將一個圖嵌入另一個圖之中﹐並且使的原本的圖是後來這個擴展的圖的median。
在第四章裡面我先介紹了一個圖的變化光譜的定義。並且找出某幾類的圖的變化光譜。另外﹐在點數跟maximum degree固定的情況下﹐我也找出了到底有哪些圖的 status 可以達到最小。
| zh_TW |
dc.description.abstract | In this thesis, we consider some problems about degree sequences and statuses
of graphs.
In Chapter 2 we obtain the graphs which are degree unique in trees, connected
regular graphs, forests, unicyclic graphs and bicyclic graphs, respectively.
In Chapter 3 we consider the problem of embedding a given graph as the
median of another graph. We investigate the problem in the weighted version
and for some related notions such as antimedian and i-th median (i = 1, 2, . . .).
In Chapter 4 we investigate the variance spectrums of graphs. We also
characterize the graphs whose minimum statuses attain the minimum in the
family of graphs with fixed maximum degree and order
| en_US |
DC.subject | 程度序列 | zh_TW |
DC.subject | 狀態 | zh_TW |
DC.subject | degree sequence | en_US |
DC.subject | status | en_US |
DC.title | 圖的程度序列和狀態 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Degree Sequences and Statuses in Graphs | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |