dc.description.abstract | The content of this thesis is about phase noise mechanism in voltage controlledoscillator (VCO) and implementation of K-band low noise amplifier (LNA). Thetime-varying concept is used to analyze the phase noise caused by various noisesources in the circuits. The measurement results of the implemented VCO ensure thevalidity of the mentioned notion in this thesis. TSMC 0.18-μm CMOS technology isadopted to implement the following circuits; (1) Complemently cross couple VCO.The oscillation frequency is 5.2 GHz, tuning range is 633 MHz, phase noise is -120.2dBc/Hz at 1MHz offset, and -185.3 dBc/Hz of Figure-of-Merit (FOM); (2) Thesecond circuit is a noise-shifting Colpitts VCO. The oscillation frequency is 12.6 GHz,tuning range is 227 MHz, phase noise is -110.3 dBc/Hz at 1 MHz offset, and -182.74dBc/Hz of FOM; (3) The third circuit is a tripilar coupling VCO. The oscillationfrequency is 12.8 GHz, tuning range is 136 MHz, phase noise is -97.08 dBc/Hz at1MHz offset, and FOM is -181.53 dBc/Hz.
Due to the rapid development of wireless communication system, largerbandwidth and higher speed are required. In order to achieve the wide bandwidth,higher frequency communication standard become a necessary trend in recent years.For instance, the application of wireless broadband networks in IEEE 802.16 standardis wireless metropolitan area network (WMAN). Therefore, the K-band LNAs areimplemented in this thesis. In order to confirm the validity of the transistor widthoptimization method, the transformer feedback technique is employed to neutralize the gate-drain overlap capacitance. TSMC 0.18-μm CMOS technology is adopted toimplement the following LNAs; (1) A 26 GHz transformer feedback three cascadestages low noise amplifier achieved a power gain of 9.2 dB, a noise figure of 6.9 dB.The 1-dB gain compression point and the input third-order intercept point are -11dBm and -2 dBm, respectively, and total power consumption is 64 mW. (2) A 25.8GHz transformer feedback three cascade stages low noise amplifier achieved a powergain of 10 dB, 4.84 dB noise figure. The 1-dB gain compression point and the inputthird-order intercept point are -17.8 dBm and -5 dBm, respectively, and total powerconsumption is 25.8 mW. | en_US |