博碩士論文 945402017 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator范登凱zh_TW
DC.creatorTeng-Kai Fanen_US
dc.date.accessioned2010-6-15T07:39:07Z
dc.date.available2010-6-15T07:39:07Z
dc.date.issued2010
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=945402017
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstractContextual Advertisement 是一種透過Web 來吸引顧客的廣告形式,目前已逐漸成為重要的行銷管道之一。本研究提出一套基於廣告內容 (文字型廣告) 的機制,將相關的廣告分配至一般個人網頁 (如部落格網頁)。部落格是Web2.0 的代表應用之一,其特點在給予使用者便利的內容創造工具。透過部落格,內容創造者可輕易地表達個人的意見,而一般瀏覽者也可據此意見做為商品選購的參考。因此如果一個部落格網頁呈現的是產品的負面意見,那麼瀏覽者的點選機率可能是較低的。再者,部落格的擁有者恐怕會更樂意地獲得和自身網站內容呈現高度正相關的廣告。因此,我們提出一個透過意見分析中的情緒偵測來改善目前現有的文字型廣告,稱之為SOCA (Sentiment oriented contextual advertising) 架構。 從另一個角度來說,雖然大部份文字型廣告考慮的是“放置瀏覽者可能關心的廣告”,但事實上大多數不是熱門的部落格網頁最主要的瀏覽者就是部落客本身。因此就長尾理論來說,我們更應該為大多數內容創造者配置合適的廣告。因此本研究即據此想法提出以部落客為中心的廣告配置架構 (Blogger-centric contextual advertising)。本研究應用意見分析、意圖辨識、資料檢索、機器學習等技術做為SOCA 及 BCCA 廣告架構。 此外社群網路 (Social Network, 例如: Facebook, Morgenstern) 已漸漸成為使用者產生社群活動的平台。文獻指出超過五分之一的線上廣告被配置於社群網路中,因此線上廣告配置基於使用者興趣及社群關係更顯得格外重要。本研究最後以社群網路為背景提出以機器學習為基礎的廣告配置架構。首先我們提出三種基礎過濾機制 (1) 基於內容過濾 (Content-based filtering);(2) 協同式過濾 (Collaborative filtering);(3) 社群式過濾 (Social filtering):。此外為了加強協同式過濾法,我們採用boosted 方法來解決 first-rater 和 sparse 問題,稱為boosted models;最後為了有效將 fundamental 及 boosted 過濾機制整合,我們提出以機器學習為主的過濾機制來配置社群網路中的廣告。 本論文透過真實資料集進行實驗,資料集包含有文字廣告、部落格網頁及社群網路相關資料,實驗結果顯示,本論文所提出的方法模型確實有效地配置和使用者興趣相關的廣告。 zh_TW
dc.description.abstractWeb advertising, a form of advertising that uses the World Wide Web to attract customers, has become one of the world’s most important marketing channels. This study addresses the mechanism of Content-based advertising (Contextual advertising), which refers to the assignment of relevant ads to a generic individual web page, e.g. a blog post. As blogs become a platform for expressing personal opinion, they naturally contain various kinds of expressions, including both facts and opinions. Such opinions can be references for decision making of the Web surfers who browses the blog. Thus, if a blog contains negative opinion of some product, it is less likely the ad be clicked. Besides, the web-site owners would be more willing to have ads which are positively related to their contents. Hence, we propose the utilization of sentiment detection to improve Web-based contextual advertising. The proposed SOCA (Sentiment-Oriented Contextual Advertising) framework aims to combine contextual advertising matching with sentiment analysis to select ads that are related to the positive (and neutral) aspects of a blog and rank them according to their relevance. On the other hand, although most contextual advertising scheme considers Web surfers as the ad consumer, bloggers themselves are the constant visitors of their own blogs. Thus, it is worth that the advertising scheme put in the first place the interests or intention of the content creators. Thus, we propose BCCA (Blogger-Centric Contextual Advertising) framework which combines contextual advertising matching with text mining technique to select ads that are related to immediate interests as revealed in a blog and rank them according to their relevance. In addition to general web pages, as social networks are becoming a more interactive platform for social activities, more than 20% of online advertisements are served on social networks. The allocation of advertisements based on both individual information and social relationships is becoming ever more important. In our third advertising framework, we firstly propose the idea of social filtering and compare it with content-based filtering and collaborative filtering for advertisement allocation in a social network. Secondly, we apply content-boosted and social-boosted methods to enhance existing collaborating filtering model. Finally, an effective learning-based framework is proposed for combing filtering models to improve social advertising. We experimentally validate our approach using a set of data that includes real ads, actual blog pages and social networks using metrics of information retrieval. The results indicate that our proposed method could efficiently identify those ads that are relevant to users’’ interests. en_US
DC.subject社會網路zh_TW
DC.subject資訊檢索zh_TW
DC.subject機器學習zh_TW
DC.subject文字探勘zh_TW
DC.subject文字型廣告zh_TW
DC.subjectmachine learningen_US
DC.subjecttext miningen_US
DC.subjectcontextual advertisingen_US
DC.subjectsocial networken_US
DC.subjectinformation retrievalen_US
DC.title網路個人化廣告配置之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleAllocation of Personalized Ads on the Weben_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明