博碩士論文 952201014 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator蔡孟哲zh_TW
DC.creatorMeng-che Tsaien_US
dc.date.accessioned2008-6-20T07:39:07Z
dc.date.available2008-6-20T07:39:07Z
dc.date.issued2008
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=952201014
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在此篇文章中,我們給出一些方法去證明算子從 到 的有界性。當假設條件與Muckenhoupt權類有關時,我們可以了解到雙權模不等式的證明只依賴於單權模不等式。我們給出一些例子去說明如何證明它,那就是我們證明極大算子 、奇異積分算子 、極大奇異積分算子 、Marcinkiewicz積分算子 、Marcinkiewicz積分算子 關於面積積分 以及Marcinkiewicz積分算子 關於Littlewood-Paley -函數都是從 到 有界。最後我們用另一個假設條件去證明Marcinkiewicz積分算子 是從到 有界。zh_TW
dc.description.abstractIn this paper, we give some methods such that the operators are bounded from to . Under the condition related to the Muckenhoupt weights class, we realize that the proof of two weighted norm inequality only depends on one-weighted norm inequality. We give some examples to describe how did we prove it; that is, we proved that the maximal operator , the singular integral operator , the maximal singular integral operator , the Marcinkiewicz integral operator ,the Marcinkiewicz integral operator related to the area integral , and the Marcinkiewicz integral operator related to the Littlewood-Paley -function operator are all bounded from to . Finally, we prove that the Marcinkiewicz integral operator is bounded from to for another condition of .en_US
DC.subject奇異積分zh_TW
DC.subject有界性zh_TW
DC.subjectzh_TW
DC.subjectweighten_US
DC.subjectboundednessen_US
DC.subjectsingular integral operatorsen_US
DC.title奇異積分的加權有界性zh_TW
dc.language.isozh-TWzh-TW
DC.titleThe weighted boundedness of singular integral operatorsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明