DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 蔡孟哲 | zh_TW |
DC.creator | Meng-che Tsai | en_US |
dc.date.accessioned | 2008-6-20T07:39:07Z | |
dc.date.available | 2008-6-20T07:39:07Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=952201014 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 在此篇文章中,我們給出一些方法去證明算子從 到 的有界性。當假設條件與Muckenhoupt權類有關時,我們可以了解到雙權模不等式的證明只依賴於單權模不等式。我們給出一些例子去說明如何證明它,那就是我們證明極大算子 、奇異積分算子 、極大奇異積分算子 、Marcinkiewicz積分算子 、Marcinkiewicz積分算子 關於面積積分 以及Marcinkiewicz積分算子 關於Littlewood-Paley -函數都是從 到 有界。最後我們用另一個假設條件去證明Marcinkiewicz積分算子 是從到 有界。 | zh_TW |
dc.description.abstract | In this paper, we give some methods such that the operators are bounded from to .
Under the condition related to the Muckenhoupt weights class, we realize that the proof of two weighted norm inequality only depends on one-weighted norm inequality. We give some examples to describe how did we prove it; that is, we proved that the maximal operator , the singular integral operator , the maximal singular integral operator , the Marcinkiewicz integral operator ,the Marcinkiewicz integral operator related to the area integral , and the Marcinkiewicz integral operator related to the Littlewood-Paley -function operator are all bounded from to .
Finally, we prove that the Marcinkiewicz integral operator is bounded from to for another condition of . | en_US |
DC.subject | 奇異積分 | zh_TW |
DC.subject | 有界性 | zh_TW |
DC.subject | 權 | zh_TW |
DC.subject | weight | en_US |
DC.subject | boundedness | en_US |
DC.subject | singular integral operators | en_US |
DC.title | 奇異積分的加權有界性 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | The weighted boundedness of singular integral operators | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |