博碩士論文 952201025 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator姚文銘zh_TW
DC.creatorMan-meng Ioen_US
dc.date.accessioned2008-7-21T07:39:07Z
dc.date.available2008-7-21T07:39:07Z
dc.date.issued2008
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=952201025
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在這篇論文中,我們探討單一非線性平衡律的擾動黎曼問題的古典解。此平衡律等價於一個二乘二非線性平衡系統,而且是一個共振的系統。 透過特徵線的方法,我們建立擾動黎曼問題的古典解。經由此古典解的點態極限,我們並獲得對應之黎曼問題的解的自相似性。zh_TW
dc.description.abstractIn this paper we study the classical solutions to the perturbed Riemann problem of some scalar nonlinear balance law in resonant case. The equation with source term is equivalent to a 2×2 nonlinear balance laws as described in [6, 7], and it is a resonant system due to the fact that the speeds of waves in the solution to this 2×2 system coincide. The characteristic method in [8] is applied to construct the classical solutions of perturbed Riemann problem. Moreover, we show that, the pointwise limit of classical solutions, which are defined as the measurable solutions to the corresponding Riemann problem (with singular source) of perturbed Riemann problem, are self-similar as described in [12].en_US
DC.subject擾動黎曼問題zh_TW
DC.subject黎曼問題zh_TW
DC.subject非線性平衡律zh_TW
DC.subject特徵線法zh_TW
DC.subjectLax's 方法zh_TW
DC.subject守恆律zh_TW
DC.subjectPerturbed Riemann problemsen_US
DC.subjectRiemann problemsen_US
DC.subjectNonlinear balance lawsen_US
DC.subjectConservation lawsen_US
DC.subjectLax's methoden_US
DC.subjectCharacteristic methoden_US
DC.title共振守恆律的擾動黎曼問題的古典解zh_TW
dc.language.isozh-TWzh-TW
DC.titleClassical Solutions to the Perturbed Riemann Problem of Scalar Resonant Balance Lawen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明