博碩士論文 953203073 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator高聖鎰zh_TW
DC.creatorSheng-Yi Gauen_US
dc.date.accessioned2008-6-25T07:39:07Z
dc.date.available2008-6-25T07:39:07Z
dc.date.issued2008
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=953203073
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract第一部份, Takagi-Sugeno 模糊模型可完整地代表原始的非線性系統, 並且藉由Lyapunov 定理將問題轉為線性矩陣不等式, 此一簡單且兼具數理基礎和系統化步驟的特色成為本篇論文使用的主要原因。如上, 所以我們先建立一具耗散性的模糊化奇異攝動系統, 接著導入耗散性控制, 可藉由選取供應率(supplyrate) 的特點來處理各種性能問題, 之後再設計一分散平行補償控制器(PDC)利用狀態回饋控制來控制系統。 第二部分, 在最近幾年的模糊控制文獻中, 大部分研究主要著重於找出一共同P 矩陣來滿足二次Lyapunov 函數, 此一方法為充分但非必要條件且求解較保守(conservatism)。在此我們使用了波雅定理的代數性質來建立一組線性矩陣不等式, 此組線性矩陣不等式可求得出一二次穩定之不保守解(less conservativesolution), 進而漸進至系統穩定之必要條件, 在數理方面證明雙向的充要條件, 以工程的角度則可設計出使系統性能便好的控制器。zh_TW
dc.description.abstractIn this thesis, we propose a general quadratic dissipative state feedback control method to solve a stabilization problem for fuzzy singularlyperturbed system. The problem covers the bounded real, positive realand sector-bounded performance as a special case by choosing the corresponding quadratic supply rate. Moreover, we also prove necessary and sufficient conditions to state feedback controllers ensuring quadratic stability for Takagi-Sugeno fuzzy systems in theory. But our main objective is to generate a family of linear matrix inequalities based on an extension of P´olya’s theorem(a.k.a Matrix-valued P´olya’s heorem). The proposed conditions are stated as progressively less conservative sets of linear matrix inequalities, allowing us to obtain a solution for the quadratic stabilizability problem whenever a solution exists.en_US
DC.subject奇異攝動系統zh_TW
DC.subject耗散控制zh_TW
DC.subject波雅定理zh_TW
DC.subjectdissipative controlen_US
DC.subjectPolya theoremen_US
DC.subjectsingularly perturbed systemsen_US
DC.title奇異攝動耗散模糊控制系統-波雅定理zh_TW
dc.language.isozh-TWzh-TW
DC.titledissipative control for singularly perturbed fuzzy systems with Polya theoremen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明