DC 欄位 |
值 |
語言 |
DC.contributor | 化學工程與材料工程學系 | zh_TW |
DC.creator | 吳其峰 | zh_TW |
DC.creator | Chi-Feng Wu | en_US |
dc.date.accessioned | 2008-6-29T07:39:07Z | |
dc.date.available | 2008-6-29T07:39:07Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=953204054 | |
dc.contributor.department | 化學工程與材料工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本論文主要是利用電紡絲製備含聚甲基丙烯酸甲酯的超疏水表面。要形成超疏水表面有兩個要件:一、微奈米級粗糙表面;二、低表面能物質。而使用電紡絲製程可製造出微米、奈米級直徑纖維或小球,形成本實驗所需要的粗糙表面,形成接觸角大於150°的超疏水表面為本研究最終目標。
實驗部份首先研究聚甲基丙烯酸甲酯於不同濃度下,經電紡絲所形成的粗糙表面形態與水滴在其表面的接觸角。研究結果顯示,在低濃度時纖維無法連續而斷裂成小球狀,此時的接觸角最大,可達146.2°。
第二部份利用含氟高分子溶液,欲降低其表面能來提高接觸角,結果接觸角最高至150.5°。考量經濟效益下,需降低含氟高分子的使用量,而與高分子量之聚甲基丙烯酸甲酯溶液混合,最終測得最高接觸角143.6°。
第三部份,以溶膠-凝膠法來製備有機/無機混成電紡絲表面,順利獲得接觸角157.0°之超疏水表面。
最後,為改善奈微米球在基材表面的不穩定現象,使用沸點高達153 ℃的二甲基甲醯胺混合丁酮為溶劑,因二甲基甲醯胺揮發速度較慢,在低濃度時形成互相連結的奈米纖維或團聚黏合的高分子小球,使其擁有穩固的結構。 | zh_TW |
dc.description.abstract | The target of this research was preparation of superhydrophobic poly(methyl methacrylate) (PMMA) surface by electrospinning. There are two key points to achieve superhydrophobic surface: (1) low surface energy material, and (2) micro-/nano-meter rough structure. Micro-/nano-fibers or beads could be manufactured via electrospinning process in order to form rough structures we needed. Further, low energy materials were introduced into electrospun surfaces for obtaining superhydrophobic surfaces.
First of all, researching morphologies and water contact angles of electrospun PMMA surfaces were on the different molecular weight and polymer concentration. The electrospun PMMA with low concentration was unable to keep fiber shape but turn into beads resulted in performing the highest water contact angle 146.2° on the surface.
In order to decrease surface energy, water-repellent materials were prepared by utilizing TA-N fluoroalkylate (TAN) and methyl methacrylate (MMA) copolymer. The superhydrophobic property of the electrospun poly(TAN-MMA) surfaces were arrived, and the contact angle was 150.5°. In the other hand, poly(TAN-MMA) mixed with high molecular weight PMMA for decreasing amounts of expensive fluoride polymer. This economical method showed almost superhydrophobic (143.6°).
Second way to decrease surface energy was utilization of sol-gel method to form organic/inorganic hybrid surface. The contact angle of the electrospun hybrid surface was 157.0°.
Finally, choosing high boiling point matter, DMF, as solvent attemped to improve stability of surfaces. Because DMF evaporated slowly, the electrospun surfaces presented stable structures of connected nanofibers or bead mats. | en_US |
DC.subject | 蓮花效應 | zh_TW |
DC.subject | 超疏水 | zh_TW |
DC.subject | 聚甲基丙烯酸甲酯 | zh_TW |
DC.subject | 電紡絲 | zh_TW |
DC.subject | 含氟高分子 | zh_TW |
DC.subject | 有機/無機混成材料 | zh_TW |
DC.subject | 溶膠-凝膠法 | zh_TW |
DC.subject | lotus effect | en_US |
DC.subject | superhydrophobic | en_US |
DC.subject | poly(methyl methacrylate) | en_US |
DC.subject | electrospinning | en_US |
DC.subject | fluorinated-copolymer | en_US |
DC.subject | hybrid | en_US |
DC.subject | sol-gel | en_US |
DC.title | 利用電紡絲製備含聚甲基丙烯酸甲酯之超疏水表面 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Preparation of superhydrophobic PMMA surfaces by electrospinning | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |