博碩士論文 955201019 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator林仕庭zh_TW
DC.creatorShih-ting Linen_US
dc.date.accessioned2009-8-16T07:39:07Z
dc.date.available2009-8-16T07:39:07Z
dc.date.issued2009
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=955201019
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract肢體語言辨識(Gesture Recognition)為人機互動(Human Computer Interaction)運用中一項重要的技術,其中視角無視辨識(View-Independent Recognition)為機器視覺辨識的難題。為了賦予機器學習模型(Machine Learning model)辨識事物於不同視角的能力,時間資訊的運用是一道線索。然而多數的機器學習模型本質為辨識模型(discriminative model),運算複雜度的問題使其困難於運用時間資訊,並被認為欠缺對輸入訓練資料的歸納性(generalization)與藉由過去經驗幫助新事物學習,增進學習(incremental learning)的能力。 分級時序記憶(Hierarchical Temporal Memory)為近年新發展的機器學習模型。根據人類大腦皮質的運算假說:記憶預測架構,建構非辨識模型(non-discriminative model)。分級時序記憶利用時間資訊行使非監督式學習,使機器學習模型具備歸納訓練資料與增進學習的能力,同時達到可信賴的辨識結果。本論文使用電腦視覺演算法與分級時序記憶實作兩個手勢辨識問題,於視角變動的連續影像的單張辨識中(snap shot)分別得到辨識正確率91%與84%的辨識結果。 zh_TW
dc.description.abstractGesture Recognition is importance in designing efficient Human Computer Interaction (HCI) applications and View-Independent Recognition is one of a difficult computer vision gesture recognition problem. Temporal information is a clue to provide the ability to recognize object in variant phase for Machine Learning model. However, most of the Machine Learning Model is discriminative model. It has computational complexity problem for using temporal information and proves inadequate at the ability of training data generalization and incremental learning essentially. Hierarchical Temporal Memory is a novel Machine Learning model studying in recent years. According to the memory prediction framework hypothesis of brain new cortex, Hierarchical Temporal Memory builds a non-discriminative model using temporal information to do unsupervised learning. Try to achieve training data generalization and incremental learning ability without losing recognition reliability. Combining computer vision image process algorithm and Hierarchical Temporal Memory Machine Learning model, a hand gesture recognition system was built in this paper. Two continuous view-point change recognition problems was tested, the continuous image sequence snap shot recognition accuracy results were 91% and 84% respectively. en_US
DC.subject分級時序記憶zh_TW
DC.subject手勢辨識zh_TW
DC.subject視角無關辨識zh_TW
DC.subject機器學習zh_TW
DC.subjectHierarchical Temporal Memoryen_US
DC.subjectHand Gesture Recognitionen_US
DC.subjectView-Independent Recognitionen_US
DC.subjectMachine Learningen_US
DC.title使用分級時序記憶實作視角無關手勢辨識問題zh_TW
dc.language.isozh-TWzh-TW
DC.titleView-Independent Hand Gesture Recognition using Hierarchical Temporal Memoryen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明