DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 湯惟策 | zh_TW |
DC.creator | Wei-tse Tan | en_US |
dc.date.accessioned | 2009-7-23T07:39:07Z | |
dc.date.available | 2009-7-23T07:39:07Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=962201029 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本篇論文針對半導體儀器作數值模擬,運用 inexact Newton’’s method 對 drift-diffusion model 求解。考慮原型的 drift-diffusion model 包含:電子電壓,電子濃度,電洞濃度等三個未知變數。數值實驗使用 drift-diffusion model 模擬一個一維的二極體幾何模型。我們討論兩個不同的 non-dimensionalization approach 對 Newton’’s method 的影響並分析 GMRES method 使用不同的 preconditioner 在 Newton’’s method 的結果。實驗結果顯示使用不同的 non-dimensionalization approach 將影響 Newton’’s method 的收斂情形。在實驗中我們使用 US non-dimensional approach (Uniform Scaling non-dimensional approach) 有效的提供 Newton’’s method 一個良好的環境。根據實驗結果發現增加 block Jacobi preconditioner 中 block 的數量幾乎不影響 Newton’’s method 的迭代次數,更甚者即便是增加網格點的數目 Newton’’s method 的迭代次數依然不受影響。
| zh_TW |
dc.description.abstract | The aim of this thesis to employ an inexact Newton’’s method to solve discrete drift-diffusion model in semiconductor device simulations, where the drift-diffusion model in the primitive form consists of the electrostatic potential , the electron concentrations and the hole concentrations. Consider a 1D diode simulations modeled by drift-diffusion as a test case. We discuss the effect on Newton’’s method by two non-dimensionalization approaches and the application of GMRES method without/ with diagonal and block Jacobi. It is true that the non-dimensional approach will affect the converge of Newton’’s method. In our case, we choose US non-dimensional approach (Uniform Scaling non-dimensional approach) and it will make a great environment for Newton’’s method. From numerical experiment, we find that increasing number of blocks for a block Jacobi preconditioner almost doesn’’t affect the number of Newton’’s iterations and decreasing grid size for a block Jacobi preconditioner also doesn’’t affect the Newton’’s iterations neither.
| en_US |
DC.subject | semiconductor | zh_TW |
DC.subject | GMRES | zh_TW |
DC.subject | finite difference | zh_TW |
DC.subject | drift-diffusion | zh_TW |
DC.subject | Newton's method | zh_TW |
DC.subject | drift-diffusion | en_US |
DC.subject | Newton's method | en_US |
DC.subject | finite difference | en_US |
DC.subject | GMRES | en_US |
DC.subject | semiconductor | en_US |
DC.title | An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations | en_US |
dc.language.iso | en_US | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |