DC 欄位 |
值 |
語言 |
DC.contributor | 物理學系 | zh_TW |
DC.creator | 劉建良 | zh_TW |
DC.creator | Jian-Liang Liu | en_US |
dc.date.accessioned | 2013-8-28T07:39:07Z | |
dc.date.available | 2013-8-28T07:39:07Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=962402004 | |
dc.contributor.department | 物理學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 哈密頓三形式扮演了沿著N向量演化方程的生成子的角色。它決定了哈密頓邊界表示 式,也因而決定了準局域量。能量其意義實為能差,能差的概念總是涉及一個相對的參考值,因此無法唯一定義物理的能量。協變哈密頓法[PRD 72 (2005)
104020]指定了一個適當的邊界表示式,而近期的工作中[PRD 84 (2011) 084047;GRG 44 (2011) 2401],考慮球對稱時空的情形,我們藉由四維度規在封閉二維面上的適配條件得到令人滿意的結果。本文分析了一般情形的四維度規在封閉二維面的適配條件。我們發現對於一個二維面,滿足等距嵌入到閔氏空間,在度規適配的條件下仍然具有兩個自由度可以決定參考系的選擇。準局域能量的值形成一個集,若 它是這兩個自由函數的泛函,則臨界點為其一階變分的解,而準局域能量則為相應的臨界值。 | zh_TW |
dc.description.abstract | The Hamiltonian 3-form plays the role of the generator of the evolution w.r.t. the displacement vector. It is uniquely defined up to a total differential term, the Hamiltonian boundary expression. The latter determines the quasi-local quantities. The meaningful concept of energy involves the difference of the dynamical values w.r.t. the reference values, so that we do not have a unique definition of the physical energies. For the covariant Hamiltonian approach a suitable boundary expression [PRD 72 (2005) 104020] was identified, and in recent works [PRD 84 (2011) 084047; GRG
44 (2011) 2401] we found satisfactory results obtained from matching the four metrics on a 2-sphere for spherically symmetric spacetimes. Here we analyze the general
4D-metric matching on a closed 2-surface. We find that for a 2-surface which satisfies isometric embedding into Minkowski space there are still two degrees of freedom remaining to determine the choice of reference. The quasi-local energy values form a set, and, if it is a functional of the two free functions, the critical values could be determined by the solution of its variation. | en_US |
DC.subject | 四維度規適配 | zh_TW |
DC.subject | 準局域能量 | zh_TW |
DC.subject | 哈密頓量 | zh_TW |
DC.subject | 邊界表示式 | zh_TW |
DC.subject | 等距嵌入 | zh_TW |
DC.subject | 臨界值 | zh_TW |
DC.subject | 4D-metric matching | en_US |
DC.subject | quasi-local energy | en_US |
DC.subject | Hamiltonian | en_US |
DC.subject | boundary expression | en_US |
DC.subject | isometric embedding | en_US |
DC.subject | critical value | en_US |
DC.title | 廣義相對論中以四維度規適配為參考的準局域能量 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | 4D-metric matching for the reference of quasi-local energy in general relativity | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |