博碩士論文 964203018 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊管理學系zh_TW
DC.creator徐聖堡zh_TW
DC.creatorSheng-Pao Hsuen_US
dc.date.accessioned2010-6-3T07:39:07Z
dc.date.available2010-6-3T07:39:07Z
dc.date.issued2010
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=964203018
dc.contributor.department資訊管理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract資料探勘能夠從數以千萬計的資料中,探勘出有用的資訊和規則以協助決策者,找出目標顧客群並且做出更好的決策。分類是資料探勘其中一項應用非常廣泛的技術,依據已知的資料及其類別屬性來建立資料的分類模型,並以此預測其他未經分類資料的類別,而決策樹是最常使用到的一項分類模型,因為它產生的規則容易了解、且建立速度快又簡單;傳統決策樹必須要拿到完整的歷史資料,才可能生長決策樹,但是管理者希望能夠在較早的時間點,先行掌握未來可能的變化。 因此,本研究給定每筆資料中取得每個屬性的延遲時間(delay time),建立一棵考量time stamp 概念決策樹TStree,管理決策人員期望透過TStree 決策樹,找到決策時間點與分類正確率兼具的規則,先行掌握未來可能的變化。 本研究實驗結果顯示,本研究TStree 演算法只要取得部份資料,就能夠提早做出決策,並且能夠達到與傳統C4.5 相近的準確度。 zh_TW
dc.description.abstractData mining can be used to discover the useful informations and rules from the tens of millions of data, and it can identify the target customers and make better decisions. Classification is a one of the data mining domain which a very wide range of application technologies, based on available information and categories of property to create a data classification model, and use this model to forecast class of the unclassified data, while the decision tree is the most commonly used to the a classification model, because it generates easy to understand rules, and fast to establishment and simple; the traditional decision tree need to gather a complete historical data, when it grow the decision tree, but the managers hope to make decision early in time. Therefore, this study given the delay time (time stamp) for each attribute, and build a decision tree TStree which to consider the concept of time stamp, and the decision-makers hope to find the rules, it can be decision-making point early, and the nice rate of the classification accuracy through TStree. The results show that we gather some information from the complete data set, then we can make decisions early through TStree Algorithm, and the accuracy of TStree algorithm is close to the accuracy of the traditional algorithm (i.e. ID3, C4.5, etc.) en_US
DC.subject提早決策時間zh_TW
DC.subject延遲時間zh_TW
DC.subject時間標籤zh_TW
DC.subject分類zh_TW
DC.subject決策樹zh_TW
DC.subjectdecision time earlyen_US
DC.subjectdelay timeen_US
DC.subjecttime stampen_US
DC.subjectclassificationen_US
DC.subjectdecision treeen_US
DC.title考量屬性值取得延遲的決策樹建構zh_TW
dc.language.isozh-TWzh-TW
DC.titleDecision Tree Induction with Time Stamp of Information Acquisitionen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明