博碩士論文 964206018 完整後設資料紀錄

DC 欄位 語言
DC.contributor工業管理研究所zh_TW
DC.creator陳文傑zh_TW
DC.creatorWen-jie Chenen_US
dc.date.accessioned2009-7-17T07:39:07Z
dc.date.available2009-7-17T07:39:07Z
dc.date.issued2009
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=964206018
dc.contributor.department工業管理研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在這篇研究中,我們結合價格波動於隨機存貨模型中,並且在多期的情況下,討論零售商應該選擇哪種存貨策略以獲得最大價差利潤。跟之前文獻不同的是,我們使用時間序列模型ARMA(p,q)當作我們的購買價格函數,以及使用簡單線性需求函數去建構一個多期存貨模型。 當位於單一期間時,我們計算出下期的顧客期望需求以及下期漲價機率,並且提出幾個購買策略,經過比較之後,我們發現在大多數的情況下,依據下期漲價機率所製定的該策略有較佳的利潤,透過模擬數據,我們驗證該策略的最佳性,另外也對模型裡的參數做數值以及敏感度分析,最後給予零售商建議。 zh_TW
dc.description.abstractIn this study, we combine fluctuated purchasing price into stochastic inventory model and discuss the inventory strategy which retailers should select for obtaining maximum profit in multiple periods. Unlike previous stochastic inventory literatures, we use time series model ARMA(p,q) and simple linear price-demand function as our purchasing price model and demand function to construct a multiple-period inventory model. When we are in one single period, we calculate expected customer demand of next period and the mark-up probability of next period. Also, we propose some purchasing strategies. After comparing, we find out the strategy made referring the mark-up probability of next period has better profit in most conditions. We confirm the optimum of that strategy and do sensitive and numerical analysis about model’s parameters using simulation data. Finally, we give suggestions to retailers. en_US
DC.subject存貨策略zh_TW
DC.subject隨機存貨模型zh_TW
DC.subject時間序列zh_TW
DC.subjectStochastic inventory modelen_US
DC.subjectInventory strategyen_US
DC.subjectTime seriesen_US
DC.title價格與需求波動下之多期存貨策略zh_TW
dc.language.isozh-TWzh-TW
DC.titleMultiple-period inventory strategy under fluctuated purchasing price and demanden_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明