dc.description.abstract | Several resistive ring-type broadband mixers have been designed and fabricated by using CMOS techniques for microwave and MMW applications in this thesis. Since the broadband operation and the output power requirement are a tradeoff between the conversion loss and output 1 dB compression point, and the total gate area of NMOS transistor further investigated with the conversion loss. A broadband mixer without on-chip balun has been fabricated using 0.35 ?m SiGe BiCMOS process to verify the resistive ring-type mixer.
The doubly balanced mixer with a compact Marchand balun has been presented in CMOS 0.18 ?m technique with a chip size of 0.6 ×0.4 mm2. The mixer exhibits an operation frequency of from 18 to 52 GHz, a measured conversion loss of 11.5 dB, an IF Frequency bandwidth of from DC to 14 GHz, an input P1dB of 3 dBm, and an LO-RF isolation of 40 dB.
In chapter 4, an IQ mixer achieved using the doubly balanced mixer, a power dividers, and a 90。 hybrid couplers is also presented with a chip size of 0.8 ×0.5 mm2 for high-speed orthogonal modulation applications. The IQ mixer demonstrated a measured conversion loss of 12.5 dB, an IF Frequency bandwidth of DC-14 GHz, an input P1dB of 3 dBm, a LO-RF, isolation of 35 dB, and a side-band suppression of -33 dBc.
In chapter 5, an active Gilbert-cell mixer has been presented in BiFET process with the operating frequency of 0.8-20 GHz. BiFET process was compined with HBTs and PHEMTs. For the high performance mixer, HBT devices was designed for trans-conductance stage, PHEMT devices was designed for switch-stage. By the way, the design could been using in a modulator. The data rate is more than 2 Gbps.
| en_US |