博碩士論文 965202018 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator黃景詮zh_TW
DC.creatorChing-Chuan Huangen_US
dc.date.accessioned2010-5-13T07:39:07Z
dc.date.available2010-5-13T07:39:07Z
dc.date.issued2010
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=965202018
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract近年來隨著網路與3D繪圖技術的進步,網路虛擬環境(Networked Virtual Environment, NVE)已成為熱門的研究之一,其中應用最廣的就是多人線上遊戲(Massively Multi-user Online Game, MMOG),例如第二人生(Second Life, SL)與魔獸世界(World of Warcraft, WoW)。網路虛擬環境的使用者以虛擬化身(avatar)的方式在虛擬環境中遊覽(navigate)並且彼此互動。由於網路虛擬環境上部分使用者的興趣或習慣相近,使得虛擬環境中的化身會有相似的行為特性,進而在網路虛擬環境中產生相近的移動路徑。例如在Second Life中,各種商店總會吸引各式各樣的使用者(玩家)聚集,部分的玩家可能對相同的商店感興趣因而會前往共同的目的地,促使玩家之間會有相近的移動路徑。 本研究提出兩個網路虛擬環境上化身路徑群組(Path Clustering) 的演算法,分別是Average Distance of Corresponding Points-Density Clustering(ADOCP-DC)和Longest Common Subsequence-Density Clustering(LCSS-DC)。其中ADOCP-DC演算法以ADOCP方法計算出路徑的相似度,然後以密度群組方法歸納網路虛擬環境中的路徑,以尋求行為模式相近的使用者或社群;而LCSS-DC演算法是以LCSS方法計算出路徑的相似度,然後同樣以密度群組方法歸納網路虛擬環境中的路徑,以得到數個相似度高且數量多的路徑群組。各個路徑群組中可以找出一條與最多路徑相似的代表路徑(Representative Path),可以協助改進以下研究:同儕式網路虛擬環境(P2P-NVE)設計、使用者的狀態管理(State Management)、使用者的移動模組探討(Behavior Model)、叢集式伺服器的負擔平衡(Load Balance on Server Cluster)以及虛擬世界的切割(Partitioning on NVE)等。另外亦可提供遊戲開發者進行虛擬環境中場景佈置與改善的參考,以及在虛擬世界中讓廣告看板宣傳效益最大化的調整。本論文以Second Life虛擬世界裡化身的位置追蹤資料(trace data)來作為ADOCP-DC和LCSS-DC的模擬實驗資料來源,並展示如何在不同實驗設定下,藉由調整演算法參數來達成較佳的路徑群組品質。 zh_TW
dc.description.abstractWith the increase of network bandwidth and the advance of 3D graphics technology, networked virtual environments (NVEs) have become one of the most popular research topics. Massively multiplayer online games (MMOGs), like Second Life and World of Warcraft (WoW), are well known examples of NVEs. Because users’ interests or habits may be similar, avatars, the representative of users on the NVE, may have similar behavior patterns, which leads to similar paths on the NVE. For instance, different kinds of virtual shops in Second Life attract a variety of users to drop by, and thus users with similar interests usually head toward common destinations and produce similar paths. This research proposes two avatar path clustering algorithms for NVEs, namely, Average Distance of Corresponding Points-Density Clustering (ADOCP-DC) and Longest Common Subsequence-Density Clustering (LCSS-DC). In ADOCP-DC algorithm, the path similarities are computed with the ADOCP mechanism first, and then paths are clustered with Density-Based Clustering to find users with similar paths. LCSS-DC algorithm uses the LCSS mechanism to compute the path similarities and then clusters paths with Density-Based Clustering. Both algorithms will produce a Representative Path (RP) for each cluster of paths. They can be applied to several research areas like peer-to-peer networked virtual environments (P2P-NVEs), avatar state management, avatar behavior analysis and server load balancing. Game developer can also apply the algorithms to find out popular paths for improving the game design. We take Second Life user trace data as input of the algorithms to demonstrate the algorithms’ execution. We also show how to adjust algorithm parameters to obtain high-quality path clustering. en_US
DC.subjectLCSSzh_TW
DC.subject密度群組zh_TW
DC.subject網路虛擬環境zh_TW
DC.subjectSecond Lifezh_TW
DC.subject路徑群組zh_TW
DC.subjectSecond Lifeen_US
DC.subjectPath Clusteringen_US
DC.subjectLCSSen_US
DC.subjectDensity-Based Clusteringen_US
DC.subjectNetwork Virtual Environmenten_US
DC.title網路虛擬環境化身路徑群組zh_TW
dc.language.isozh-TWzh-TW
DC.titleAvatar Path Clustering for Networked Virtual Environmentsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明