DC 欄位 |
值 |
語言 |
DC.contributor | 電機工程學系在職專班 | zh_TW |
DC.creator | 邱治中 | zh_TW |
DC.creator | Chih-chung Chiu | en_US |
dc.date.accessioned | 2011-8-26T07:39:07Z | |
dc.date.available | 2011-8-26T07:39:07Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=965301031 | |
dc.contributor.department | 電機工程學系在職專班 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 生物晶片技術其主要特點是可靠性高、精確性高、分析速度快、所使用的樣品及試劑少,就可獲得相關的樣品資訊。由於阻抗式生物感測器不斷朝向微小化目標邁進,可以使巔峰阻抗變大讓待測物更容易檢測,但電極的結構形狀卻會影響其晶片之量測特性,而無法得到有效之晶片的設計下將阻礙生物感測器的發展。針對不同的待測物如細胞、人類遺傳基因及蛋白質,因其粒子大小、介電係數或是濃度不同,因此待測物放置在不同的電極形狀結構時,所量測到的各項樣品資訊也會有不同的結果產生。因此本研究設計模擬了五種不同形狀的電極結構: 指叉形電極、長方形電極、圓形電極、三角形電極和碟形電極。故本文嘗試以ADS電磁模擬套裝軟體對於不同電極形狀做各種不同特性模擬研究,其中包括阻抗值及電容值的大小變化差異、電場強度分佈、靈敏度高低和待測物放置位置不同的阻抗變化模擬研究分析,進而讓設計者以這些模擬的各項數據為參考,依照不同的量測項目去設計最佳化的電極結構。最後由模擬數據可以得知五種電極的電容值大小,指叉形電極為1.600×10-14F、長方形電極為1.086×10-14F、圓形電極為6.513×10-15F、三角形電極為6.576×10-15F和碟形電極為9.924×10-15F。另外將待測物分子區分成會移動或是不會移動的情況,指叉形電極因兩電極間電場強度為均勻分佈,適合量測不會移動的待測物,當待測物放置在不同位置且電場強度相同時,其阻抗變化率只有 0.19%。而三角形電極因電極間電場強度和周圍不同,所以適合量測會移動的待測物,當待測物放置在不同位置且電場強度不相同時,其阻抗變化率為 4.54%,因此可以用來偵測待測物移動位移量,而指叉形電極和三角形電極在偵測待測物在不同位置的阻抗變化,三角形的阻抗變化為指叉形電極的 23 倍。另外指叉形電極的靈敏度為這幾種電極中最為靈敏的可達到 60.34 %,為本研究中阻抗變化最靈敏的電極結構。故可參考以上五種不同結構電極的靈敏度結果,配合實際硬體電極結構製作最佳靈敏度的電極結
構。
| zh_TW |
dc.description.abstract | This research studied five different designs of electrode-pair geometry for impedimetric biosensing applications. These included interdigitated, rectangular, circular, triangular, and dish electrode pairs. ADS (Advanced Design System) software was utilized to simulate these different electrode-pair designs on their impedance, capacitance, and electric intensity. The simulated capacitances of these five electrode-pair geometries of commensurate dimensions were 1.600 × 10-14 F, 1.086 × 10-14 F, 6.513 × 10-15 F, 6.576 × 10-15 F, 9.924 × 10-15 F, respectively. One of the simulations showed that the electric intensity in the area-of-interest in the interdigitated electrode pair was quasi-uniform. A sensor of this geometry will be insensitive to the movement of the measured object. An impedance change of merely 0.19% was caused by changing location of the measured object. The electric intensity in the area-of-interest in the triangular electrode pair was non-uniform. A sensor of this geometry will be able to sense the movement of the measured object. An impedance change of up to 4.54% was caused by changing the location of the measured object. Among the five electrode-pair types, the interdigitated one had the highest sensitivity. Adding measured substance caused 60.43% impedance change from the status with background solution only. The results of this study will be useful for guiding the electrode-pair geometry design of
impedimetric biosensors.
| en_US |
DC.subject | 指叉形電極 | zh_TW |
DC.subject | 阻抗式生物感測器 | zh_TW |
DC.subject | 靈敏度 | zh_TW |
DC.subject | 電極結構 | zh_TW |
DC.subject | Geometry | en_US |
DC.subject | Sensitivity | en_US |
DC.subject | Impedimetric Biosensor | en_US |
DC.subject | Interdigitated electrode | en_US |
DC.title | 阻抗性生物感測器的形狀對靈敏度的影響之二維電場模擬 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Two-dimensional Electric-field Simulation for Effect of Electrode Geometry on Sensitivity of Impedimetric Biosensor | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |