DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 蕭景文 | zh_TW |
DC.creator | Jing-Wen Shiao | en_US |
dc.date.accessioned | 2010-6-28T07:39:07Z | |
dc.date.available | 2010-6-28T07:39:07Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=972201001 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 圖G 的秩是一個鄰接矩陣G 的秩。2009 年,黃良豪博士、張鎮華教授、葉鴻國教授等人已經完整的描繪出當連通圖之秩為4 時此圖的所有特徵。在本篇碩士論文中我們考慮以下兩個問題:(1)考慮連通圖G具有rank(G) = 5且從圖G中拿掉任何點v 皆會有rank(G-v)=3 時,圖G 的特徵。(2) 考慮連通圖G 具有rank(G) = 5且從圖G中拿掉任何點v皆會有rank(G-v)=4 時,圖G的特徵。在這篇論文我們已經完全解決這兩個問題。
| zh_TW |
dc.description.abstract | The rank of a graph G is the rank of the adjacency matrix of G. In 2009, Chang, Huang and Yeh completely characterized the structure of a connected graph of rank
4. In this paper we consider the following two questions: (1) What is the structure of a connected graph G with the property that rank(G) = 5 and rank(G-v) = 3 for all v belong to V(G)? (2) What is the structure of a connected graph G with the property that rank(G) = 5 and rank(G-v) = 4 for all v belong to V(G)? In this paper we completely resolve these two questions.
| en_US |
DC.subject | 秩 | zh_TW |
DC.subject | 五 | zh_TW |
DC.subject | 鄰接矩陣 | zh_TW |
DC.subject | multiplication of vertices | en_US |
DC.subject | graph | en_US |
DC.subject | rank | en_US |
DC.subject | five | en_US |
DC.title | 秩為5的圖形 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | On the Graphs of Rank Five | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |