DC 欄位 |
值 |
語言 |
DC.contributor | 數學系 | zh_TW |
DC.creator | 許谷榕 | zh_TW |
DC.creator | KU-JUNG HSU | en_US |
dc.date.accessioned | 2010-6-23T07:39:07Z | |
dc.date.available | 2010-6-23T07:39:07Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=972201019 | |
dc.contributor.department | 數學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 本論文的主要目的,是去討論乘積空間上的 H^p( R^n × R^m) 有界性。在這篇論文裡,應用了 Calderon 表示定理、向量值的奇異積分、Littlewood-Paley 理論、Fefferman 的矩形原子分解和 Journe 的覆蓋引理等方法去證明 T 在 H^p(R^n × R^m),max{n/(n+ε),m/(m+ε)} | zh_TW |
dc.description.abstract | The main purpose of this paper is to discuss H^p(R^n × R^m) boundedness of Calderon-Zygmund operators. We apply vector-valued singular integral, Calderon’’s identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman’’s rectangle atomic decomposition and Journe’’s covering lemma to show that T is bounded on product H^p(R^n × R^m) for max{n/(n+ε),m/(m+ε)} | en_US |
DC.subject | 乘積空間 | zh_TW |
DC.subject | 奇異積分算子 | zh_TW |
DC.subject | 有界性 | zh_TW |
DC.subject | 哈地空間 | zh_TW |
DC.subject | Hardy spaces | en_US |
DC.subject | singular integral operators | en_US |
DC.subject | product space | en_US |
DC.subject | boundedness | en_US |
DC.title | Calderon-Zygmund 算子在乘積空間上的 H^p(R^n × R^m) 有界性 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | H^p(R^n × R^m) boundedness of Calderon-Zygmund operators | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |