博碩士論文 973203005 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator傅翰敏zh_TW
DC.creatorHan-min Fuen_US
dc.date.accessioned2010-7-28T07:39:07Z
dc.date.available2010-7-28T07:39:07Z
dc.date.issued2010
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=973203005
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本篇的主要目的在於使用後處理總體經驗模態分解法來改善之前總體經驗模態分解法的缺點,即模態混雜與端點效應。首先將旋轉機械之振動訊號透過後處理總體經驗模態分解法分解成一組數個無模態混雜且符合內稟模態函數基本條件的內稟模態函數,並選擇其中含有故障特徵的內稟模態函數進行分析。 軸承故障特徵的提取則是將內稟模態函數的包絡線經過希爾伯特轉換後繪出時頻譜,最後計算出希爾伯特邊際譜,觀察是否含有軸承故障特徵頻率以達到故障檢測目的,本篇除了檢測軸承故障的種類外,並將進行軸承故障程度上的辨別。 zh_TW
dc.description.abstractIn order to improve the drawbacks of Ensemble Empirical Mode Decomposition (EEMD), such as mode mixing and end effect problem, we present an improved HHT approach based on post-processing of EEMD to solve the problem in this paper. Once the Intrinsic Mode Functions (IMFs) are obtained from the decomposition process, the crucial step is to extract the fault features from the information-contained IMFs. The amplitude modulation (AM) phenomenon can be discovered in the IMFs with fault information. In this paper, we not only classify the types of bearing fault but also identify the level of the fault. en_US
DC.subject希爾伯特-黃變換zh_TW
DC.subject故障診斷zh_TW
DC.subjectHHTen_US
DC.subjectfault diagnosisen_US
DC.title希爾伯特-黃變換(HHT)在旋轉機械之軸承故障診斷的應用zh_TW
dc.language.isozh-TWzh-TW
DC.titleApplication of Hilbert-Huang Transform to the Bearing Fault Diagnosis of Rotating Machineryen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明