DC 欄位 |
值 |
語言 |
DC.contributor | 資訊管理學系 | zh_TW |
DC.creator | 解少帆 | zh_TW |
DC.creator | Shao-Fan Xie | en_US |
dc.date.accessioned | 2010-7-26T07:39:07Z | |
dc.date.available | 2010-7-26T07:39:07Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=974203043 | |
dc.contributor.department | 資訊管理學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 隨著網際網路以及web2.0的發達,許多針對產品或服務的使用者評論文章,充斥在評論網站以及個人部落格中。而這些評論文章,已漸漸成為消費者進行消費前的一項重要的參考指標,故準確以及有效率的將這些評論文章進行分類,將有助於消費者作出更快速以及正確的決策。
過去意見探勘對於使用者評論進行分類的方式,主要是利用語意的傾向對文章進行分析,但不同產品類型的評論文章所使用的意見詞,意義可能不會相同,且語意的程度也會有所差異。為了達到提高分類準確度之目的,本研究提出了一套方法,它利用一部分已經分類好的文章做為回饋的資訊,計算出意見詞的相對權重,再將此相對權重建立向量模型,透過機器學習的方式來計算準確度。
實驗結果顯示利用相對權重建立的向量模型,的確是比利用語意傾向做為權重,所建立的向量模型的準確率來的高。所以對於使用者評論的分類,若能利用一部分已知類別的文章,獲取資訊後,應用在未分類的評論文章上,可得到更佳的分類準確度。
| zh_TW |
dc.description.abstract | As the Internet and web2.0 are becoming more and more popular, the number of customer review grows rapidly in the web sites and the blogs. These reviews have gradually become an important reference for the consumers. Therefore, accurate and efficient classification for these reviews will help the consumers to make decisions quickly and correctly.
Past studies usually applied the opinion mining or the semantic tendency to classify the reviews. But the significance of the opinion in the diffident types of the reviews may not be the same, and the degree of the semantic tendency may be different. In order to improve the accuracy of classification, this study propose a method that applies the classified documents to get the feedback information, and then calculates the relative weight of the opinion to establish the vector model. The experimental results show that the classification accuracy of relative weight could perform better than the accuracy of semantic weights.
| en_US |
DC.subject | 向量模型 | zh_TW |
DC.subject | 機器學習 | zh_TW |
DC.subject | 意見探勘 | zh_TW |
DC.subject | 回饋資訊 | zh_TW |
DC.subject | feedback | en_US |
DC.subject | vector model | en_US |
DC.subject | machine learning | en_US |
DC.subject | opinion mining | en_US |
DC.title | 對使用者評論利用相對權重建立向量模型進行分類之研究 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | Using relative weights to build vector model to classify customer reviews | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |