dc.description.abstract | The goal of this work is to design and implement a three-links robotic fish which is propelled by electromagnet actuators and equipped with microcontrollers (BS2p), infrared sensors and radio frequency modules for wireless remote control and autonomous navigation. The robotic fish is able to imitate a real fish to swim in the water and provides with some basic capabilities, including straight moving forward, turning left/right, descending down and ascending up. Furthermore, the obstacle avoidance also can be achieved in the mean time. In some literatures, the robotic fish is propelled by caudal fin which is driven by motor. To set up a motor firmly, the shell of the robotic fish needs to be drilled several holes. However, the problem of leaking is followed. In mechanism design, the magnetic force provides the motive power that avoids leaking problem indirectly and also propels caudal fin in an appropriate distance without being affected by sealed shell.
There are two control modes for robotic fish. The first one is user-control mode, which remotes fish’s posture by operating human computer interface, including straight moving forward, turning left/right, descending down and ascending up. The second one is autonomous mode. The robotic fish not only swims by itself, but also avoids hitting obstacles in the water by its judgment. Furthermore, because fuzzy controller synthesis is applied to the robotic fish additionally, it is also capable of adjusting swimming postures according to the different distance of obstacles. That makes our robotic fish smarter and more like a real fish.
Moreover, the switch for both modes, the connection between forward part and behind part, the signal receiving from robotic fish and commands from computer rely on radio frequency modules as a communication medium.
| en_US |