博碩士論文 975202027 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator許凱凱zh_TW
DC.creatorKai-kai Hsuen_US
dc.date.accessioned2010-7-27T07:39:07Z
dc.date.available2010-7-27T07:39:07Z
dc.date.issued2010
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=975202027
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究提出一個針對固定式道路監視畫面之分析工具,用以協助解決車輛影像交疊問題,並提升車流評估及車輛分類準確度。本論文主要分為兩個部份,第一部份為模型訓練機制,經由搜集之交通場景及車輛相關資訊,分析其統計特性,取得目標道路車流方向及出現之機車、汽車、公車等各類車輛大小資訊,接著以自動化的方式建立交通場景模型及代表車輛之隱式型態模式 (ISM)。值得注意的是,此自適應機制可以大幅減少模型建置的人力需求。第二部份結合了訓練完成的ISM,對可能發生車輛影像交疊的部份進行辨識。實驗結果顯示了這個機制確實能夠適應不同的交通場景,並且有效地解決道路監視器畫面中車輛影像交疊的問題。 zh_TW
dc.description.abstractThis research presents a framework of analyzing the traffic information in the surveillance videos from the static roadside cameras to assist resolving the vehicle occlusion problem for more accurate traffic flow estimation and vehicle classification. The proposed scheme consists of two main parts. The first part is a model training mechanism, in which the traffic and vehicle information will be collected and their statistics are employed to automatically establish the model of the scene and the implicit shape model of vehicles. It should be noted that the proposed self-training mechanism can reduce a great deal of human efforts. The second part adopts the established implicit shape model, which is a highly flexible learned representation, for vehicle recognition when possible occlusions of vehicles are detected. Experimental results demonstrate that the proposed scheme can deal with the scenes with different characteristics and the occlusion problem in traffic surveillance videos can be reasonably resolved. en_US
DC.subject交通監控zh_TW
DC.subject車輛zh_TW
DC.subject交疊zh_TW
DC.subjectvehicleen_US
DC.subjecttrafficen_US
DC.subjectsurveillanceen_US
DC.subjectocclusionen_US
DC.subjectSIFTen_US
DC.title利用隱式型態模式之自適應車行監控畫面分析系統zh_TW
dc.language.isozh-TWzh-TW
DC.titleAdaptive Traffic Scene Analysis by using Implicit Shape Modelen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明